Geometric distributions over ℕ #
Define the geometric measure over the natural numbers
Main definitions #
geometricPMFReal
: the functionp n ↦ (1-p) ^ n * p
forn ∈ ℕ
, which is the probability density function of a geometric distribution with success probabilityp ∈ (0,1]
.geometricPMF
:ℝ≥0∞
-valued pmf,geometricPMF p = ENNReal.ofReal (geometricPMFReal p)
.geometricMeasure
: a geometric measure onℕ
, parametrized by its success probabilityp
.
The pmf of the geometric distribution depending on its success probability.
Equations
- ProbabilityTheory.geometricPMFReal p n = (1 - p) ^ n * p
Instances For
theorem
ProbabilityTheory.geometricPMFRealSum
{p : ℝ}
(hp_pos : 0 < p)
(hp_le_one : p ≤ 1)
:
HasSum (fun (n : ℕ) => geometricPMFReal p n) 1
theorem
ProbabilityTheory.geometricPMFReal_pos
{p : ℝ}
{n : ℕ}
(hp_pos : 0 < p)
(hp_lt_one : p < 1)
:
0 < geometricPMFReal p n
The geometric pmf is positive for all natural numbers
theorem
ProbabilityTheory.geometricPMFReal_nonneg
{p : ℝ}
{n : ℕ}
(hp_pos : 0 < p)
(hp_le_one : p ≤ 1)
:
0 ≤ geometricPMFReal p n
Geometric distribution with success probability p
.
Equations
- ProbabilityTheory.geometricPMF hp_pos hp_le_one = ⟨fun (n : ℕ) => ENNReal.ofReal (ProbabilityTheory.geometricPMFReal p n), ⋯⟩
Instances For
The geometric pmf is measurable.
Measure defined by the geometric distribution
Equations
- ProbabilityTheory.geometricMeasure hp_pos hp_le_one = (ProbabilityTheory.geometricPMF hp_pos hp_le_one).toMeasure
Instances For
theorem
ProbabilityTheory.isProbabilityMeasureGeometric
{p : ℝ}
(hp_pos : 0 < p)
(hp_le_one : p ≤ 1)
:
MeasureTheory.IsProbabilityMeasure (geometricMeasure hp_pos hp_le_one)