Poisson distributions over ℕ #
Define the Poisson measure over the natural numbers
Main definitions #
poissonPMFReal
: the functionfun n ↦ exp (- λ) * λ ^ n / n!
forn ∈ ℕ
, which is the probability density function of a Poisson distribution with rateλ > 0
.poissonPMF
:ℝ≥0∞
-valued pdf,poissonPMF λ = ENNReal.ofReal (poissonPMFReal λ)
.poissonMeasure
: a Poisson measure onℕ
, parametrized by its rateλ
.
theorem
ProbabilityTheory.poissonPMFRealSum
(r : NNReal)
:
HasSum (fun (n : ℕ) => poissonPMFReal r n) 1
theorem
ProbabilityTheory.poissonPMFReal_pos
{r : NNReal}
{n : ℕ}
(hr : 0 < r)
:
0 < poissonPMFReal r n
The Poisson pmf is positive for all natural numbers
The pmf of the Poisson distribution depending on its rate, as a PMF.
Equations
- ProbabilityTheory.poissonPMF r = ⟨fun (n : ℕ) => ENNReal.ofReal (ProbabilityTheory.poissonPMFReal r n), ⋯⟩
Instances For
The Poisson pmf is measurable.
Measure defined by the Poisson distribution
Equations
- ProbabilityTheory.poissonMeasure r = (ProbabilityTheory.poissonPMF r).toMeasure