Existence of Random Variables #
This file contains lemmas that state the existence of random variables with given distributions and a given dependency structure (currently only mutual independence is considered).
theorem
Measure.exists_hasLaw
{𝓧 : Type u}
{m𝓧 : MeasurableSpace 𝓧}
(μ : MeasureTheory.Measure 𝓧)
:
∃ (Ω : Type u) (x : MeasurableSpace Ω) (P : MeasureTheory.Measure Ω) (X : Ω → 𝓧),
Measurable X ∧ ProbabilityTheory.HasLaw X μ P
theorem
ProbabilityTheory.exists_hasLaw_indepFun
{ι : Type v}
(𝓧 : ι → Type u)
{m𝓧 : (i : ι) → MeasurableSpace (𝓧 i)}
(μ : (i : ι) → MeasureTheory.Measure (𝓧 i))
[hμ : ∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)]
:
∃ (Ω : Type (max u v)) (x : MeasurableSpace Ω) (P : MeasureTheory.Measure Ω) (X : (i : ι) → Ω → 𝓧 i),
(∀ (i : ι), Measurable (X i)) ∧ (∀ (i : ι), HasLaw (X i) (μ i) P) ∧ iIndepFun X P ∧ MeasureTheory.IsProbabilityMeasure P
theorem
ProbabilityTheory.exists_iid
(ι : Type v)
{𝓧 : Type u}
{m𝓧 : MeasurableSpace 𝓧}
(μ : MeasureTheory.Measure 𝓧)
[MeasureTheory.IsProbabilityMeasure μ]
:
∃ (Ω : Type (max u v)) (x : MeasurableSpace Ω) (P : MeasureTheory.Measure Ω) (X : ι → Ω → 𝓧),
(∀ (i : ι), Measurable (X i)) ∧ (∀ (i : ι), HasLaw (X i) μ P) ∧ iIndepFun X P ∧ MeasureTheory.IsProbabilityMeasure P