Independence of stochastic processes #
We prove that two stochastic processes $(X_s)_{s \in S}$ and $(Y_t)_{t \in T}$ are independent if for all $s_1, ..., s_p \in S$ and $t_1, ..., t_q \in T$ the two families $(X_{s_1}, ..., X_{s_p})$ and $(Y_{t_1}, ..., Y_{t_q})$ are independent. We prove an analogous condition for a family of stochastic processes.
Tags #
independence, stochastic processes
Two stochastic processes $(X_s)_{s \in S}$ and $(Y_t)_{t \in T}$ are independent if for all $s_1, ..., s_p \in S$ and $t_1, ..., t_q \in T$ the two families $(X_{s_1}, ..., X_{s_p})$ and $(Y_{t_1}, ..., Y_{t_q})$ are independent.
Stochastic processes $((X^s_t)_{t \in T_s})_{s \in S}$ are mutually independent if for all $s_1, ..., s_n$ and all $t^{s_i}_1, ..., t^{s_i}_{p_i}^ the families $(X^{s_1}{t^{s_1}1}, ..., X^{s_1}{t^{s_1}{p_1}}), ..., (X^{s_n}{t^{s_n}1}, ..., X^{s_n}{t^{s_n}{p_n}})$ are mutually independent.
Two stochastic processes $(X_s)_{s \in S}$ and $(Y_t)_{t \in T}$ are independent if for all $s_1, ..., s_p \in S$ and $t_1, ..., t_q \in T$ the two families $(X_{s_1}, ..., X_{s_p})$ and $(Y_{t_1}, ..., Y_{t_q})$ are independent.
Stochastic processes $((X^s_t)_{t \in T_s})_{s \in S}$ are mutually independent if for all $s_1, ..., s_n$ and all $t^{s_i}_1, ..., t^{s_i}_{p_i}^ the families $(X^{s_1}{t^{s_1}1}, ..., X^{s_1}{t^{s_1}{p_1}}), ..., (X^{s_n}{t^{s_n}1}, ..., X^{s_n}{t^{s_n}{p_n}})$ are mutually independent.