Documentation

Mathlib.Probability.Kernel.Integral

Bochner integrals of kernels #

theorem ProbabilityTheory.Kernel.integral_congr_ae₂ {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {f g : αβE} {μ : MeasureTheory.Measure α} (h : ∀ᵐ (a : α) ∂μ, f a =ᵐ[κ a] g a) :
∫ (a : α), ∫ (b : β), f a bκ aμ = ∫ (a : α), ∫ (b : β), g a bκ aμ
theorem ProbabilityTheory.Kernel.integral_deterministic' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {f : βE} {a : α} [CompleteSpace E] {g : αβ} (hg : Measurable g) (hf : MeasureTheory.StronglyMeasurable f) :
∫ (x : β), f x(ProbabilityTheory.Kernel.deterministic g hg) a = f (g a)
@[simp]
theorem ProbabilityTheory.Kernel.integral_deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {f : βE} {a : α} [CompleteSpace E] {g : αβ} [MeasurableSingletonClass β] (hg : Measurable g) :
∫ (x : β), f x(ProbabilityTheory.Kernel.deterministic g hg) a = f (g a)
theorem ProbabilityTheory.Kernel.setIntegral_deterministic' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {f : βE} {a : α} [CompleteSpace E] {g : αβ} (hg : Measurable g) (hf : MeasureTheory.StronglyMeasurable f) {s : Set β} (hs : MeasurableSet s) [Decidable (g a s)] :
∫ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0
@[deprecated ProbabilityTheory.Kernel.setIntegral_deterministic']
theorem ProbabilityTheory.Kernel.set_integral_deterministic' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {f : βE} {a : α} [CompleteSpace E] {g : αβ} (hg : Measurable g) (hf : MeasureTheory.StronglyMeasurable f) {s : Set β} (hs : MeasurableSet s) [Decidable (g a s)] :
∫ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0

Alias of ProbabilityTheory.Kernel.setIntegral_deterministic'.

@[simp]
theorem ProbabilityTheory.Kernel.setIntegral_deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {f : βE} {a : α} [CompleteSpace E] {g : αβ} [MeasurableSingletonClass β] (hg : Measurable g) (s : Set β) [Decidable (g a s)] :
∫ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0
@[deprecated ProbabilityTheory.Kernel.setIntegral_deterministic]
theorem ProbabilityTheory.Kernel.set_integral_deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {f : βE} {a : α} [CompleteSpace E] {g : αβ} [MeasurableSingletonClass β] (hg : Measurable g) (s : Set β) [Decidable (g a s)] :
∫ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0

Alias of ProbabilityTheory.Kernel.setIntegral_deterministic.

@[simp]
theorem ProbabilityTheory.Kernel.integral_const {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {f : βE} {a : α} {μ : MeasureTheory.Measure β} :
∫ (x : β), f x(ProbabilityTheory.Kernel.const α μ) a = ∫ (x : β), f xμ
@[simp]
theorem ProbabilityTheory.Kernel.setIntegral_const {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {f : βE} {a : α} {μ : MeasureTheory.Measure β} {s : Set β} :
∫ (x : β) in s, f x(ProbabilityTheory.Kernel.const α μ) a = ∫ (x : β) in s, f xμ
@[deprecated ProbabilityTheory.Kernel.setIntegral_const]
theorem ProbabilityTheory.Kernel.set_integral_const {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {f : βE} {a : α} {μ : MeasureTheory.Measure β} {s : Set β} :
∫ (x : β) in s, f x(ProbabilityTheory.Kernel.const α μ) a = ∫ (x : β) in s, f xμ

Alias of ProbabilityTheory.Kernel.setIntegral_const.

@[simp]
theorem ProbabilityTheory.Kernel.integral_restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {f : βE} {a : α} {s : Set β} (hs : MeasurableSet s) :
∫ (x : β), f x(κ.restrict hs) a = ∫ (x : β) in s, f xκ a
@[simp]
theorem ProbabilityTheory.Kernel.setIntegral_restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {f : βE} {a : α} {s : Set β} (hs : MeasurableSet s) (t : Set β) :
∫ (x : β) in t, f x(κ.restrict hs) a = ∫ (x : β) in t s, f xκ a
@[deprecated ProbabilityTheory.Kernel.setIntegral_restrict]
theorem ProbabilityTheory.Kernel.set_integral_restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {f : βE} {a : α} {s : Set β} (hs : MeasurableSet s) (t : Set β) :
∫ (x : β) in t, f x(κ.restrict hs) a = ∫ (x : β) in t s, f xκ a

Alias of ProbabilityTheory.Kernel.setIntegral_restrict.

theorem ProbabilityTheory.Kernel.integral_piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (g : βE) :
∫ (b : β), g b(ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then ∫ (b : β), g bκ a else ∫ (b : β), g bη a
theorem ProbabilityTheory.Kernel.setIntegral_piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (g : βE) (t : Set β) :
∫ (b : β) in t, g b(ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then ∫ (b : β) in t, g bκ a else ∫ (b : β) in t, g bη a
@[deprecated ProbabilityTheory.Kernel.setIntegral_piecewise]
theorem ProbabilityTheory.Kernel.set_integral_piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (g : βE) (t : Set β) :
∫ (b : β) in t, g b(ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then ∫ (b : β) in t, g bκ a else ∫ (b : β) in t, g bη a

Alias of ProbabilityTheory.Kernel.setIntegral_piecewise.