Documentation

Mathlib.Probability.Kernel.IonescuTulcea.Maps

Auxiliary maps for Ionescu-Tulcea theorem #

This file contains auxiliary maps which are used to prove the Ionescu-Tulcea theorem.

def IocProdIoc {ι : Type u_1} [LinearOrder ι] [LocallyFiniteOrder ι] [DecidableLE ι] {X : ιType u_2} (a b c : ι) (x : ((i : { x : ι // x Finset.Ioc a b }) → X i) × ((i : { x : ι // x Finset.Ioc b c }) → X i)) (i : { x : ι // x Finset.Ioc a c }) :
X i

Gluing Ioc a b and Ioc b c into Ioc a c.

Equations
  • IocProdIoc a b c x i = if h : i b then x.1 i, else x.2 i,
Instances For
    theorem measurable_IocProdIoc {ι : Type u_1} [LinearOrder ι] [LocallyFiniteOrder ι] [DecidableLE ι] {X : ιType u_2} [(i : ι) → MeasurableSpace (X i)] {a b c : ι} :
    def IicProdIoc {ι : Type u_1} [LinearOrder ι] [LocallyFiniteOrder ι] [DecidableLE ι] {X : ιType u_2} [LocallyFiniteOrderBot ι] (a b : ι) (x : ((i : { x : ι // x Finset.Iic a }) → X i) × ((i : { x : ι // x Finset.Ioc a b }) → X i)) (i : { x : ι // x Finset.Iic b }) :
    X i

    Gluing Iic a and Ioc a b into Iic b. If b < a, this is just a projection on the first coordinate followed by a restriction, see IicProdIoc_le.

    Equations
    • IicProdIoc a b x i = if h : i a then x.1 i, else x.2 i,
    Instances For
      theorem IicProdIoc_def {ι : Type u_1} [LinearOrder ι] [LocallyFiniteOrder ι] [DecidableLE ι] {X : ιType u_2} [LocallyFiniteOrderBot ι] (a b : ι) :
      IicProdIoc a b = fun (x : ((i : { x : ι // x Finset.Iic a }) → X i) × ((i : { x : ι // x Finset.Ioc a b }) → X i)) (i : { x : ι // x Finset.Iic b }) => if h : i a then x.1 i, else x.2 i,

      When IicProdIoc is only partially applied (i.e. IicProdIoc a b x but not IicProdIoc a b x i) simp [IicProdIoc] won't unfold the definition. This lemma allows to unfold it by writing simp [IicProdIoc_def].

      @[simp]
      theorem IicProdIoc_self {ι : Type u_1} [LinearOrder ι] [LocallyFiniteOrder ι] [DecidableLE ι] {X : ιType u_2} [LocallyFiniteOrderBot ι] (a : ι) :
      theorem IicProdIoc_le {ι : Type u_1} [LinearOrder ι] [LocallyFiniteOrder ι] [DecidableLE ι] {X : ιType u_2} [LocallyFiniteOrderBot ι] {a b : ι} (hba : b a) :
      theorem measurable_IicProdIoc {ι : Type u_1} [LinearOrder ι] [LocallyFiniteOrder ι] [DecidableLE ι] {X : ιType u_2} [LocallyFiniteOrderBot ι] [(i : ι) → MeasurableSpace (X i)] {m n : ι} :
      def MeasurableEquiv.IicProdIoc {ι : Type u_1} [LinearOrder ι] [LocallyFiniteOrder ι] [DecidableLE ι] {X : ιType u_2} [LocallyFiniteOrderBot ι] [(i : ι) → MeasurableSpace (X i)] {a b : ι} (hab : a b) :
      ((i : { x : ι // x Finset.Iic a }) → X i) × ((i : { x : ι // x Finset.Ioc a b }) → X i) ≃ᵐ ((i : { x : ι // x Finset.Iic b }) → X i)

      Gluing Iic a and Ioc a b into Iic b. This version requires a ≤ b to get a measurable equivalence.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem MeasurableEquiv.coe_IicProdIoc {ι : Type u_1} [LinearOrder ι] [LocallyFiniteOrder ι] [DecidableLE ι] {X : ιType u_2} [LocallyFiniteOrderBot ι] [(i : ι) → MeasurableSpace (X i)] {a b : ι} (hab : a b) :
        theorem MeasurableEquiv.coe_IicProdIoc_symm {ι : Type u_1} [LinearOrder ι] [LocallyFiniteOrder ι] [DecidableLE ι] {X : ιType u_2} [LocallyFiniteOrderBot ι] [(i : ι) → MeasurableSpace (X i)] {a b : ι} (hab : a b) :
        (IicProdIoc hab).symm = fun (x : (i : { x : ι // x Finset.Iic b }) → X i) => (Preorder.frestrictLe₂ hab x, Finset.restrict₂ x)
        def MeasurableEquiv.IicProdIoi {ι : Type u_1} [LinearOrder ι] [DecidableLE ι] {X : ιType u_2} [LocallyFiniteOrderBot ι] [(i : ι) → MeasurableSpace (X i)] (a : ι) :
        ((i : { x : ι // x Finset.Iic a }) → X i) × ((i : (Set.Ioi a)) → X i) ≃ᵐ ((n : ι) → X n)

        Gluing Iic a and Ioi a into , version as a measurable equivalence on dependent functions.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          def MeasurableEquiv.piSingleton {X : Type u_1} [(n : ) → MeasurableSpace (X n)] (a : ) :
          X (a + 1) ≃ᵐ ((i : { x : // x Finset.Ioc a (a + 1) }) → X i)

          Identifying {a + 1} with Ioc a (a + 1), as a measurable equiv on dependent functions.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem IocProdIoc_preimage {ι : Type u_1} [LinearOrder ι] [LocallyFiniteOrder ι] [DecidableLE ι] {X : ιType u_2} {a b c : ι} (hab : a b) (hbc : b c) (s : (i : { x : ι // x Finset.Ioc a c }) → Set (X i)) :
            theorem IicProdIoc_preimage {ι : Type u_1} [LinearOrder ι] [LocallyFiniteOrder ι] [DecidableLE ι] {X : ιType u_2} [LocallyFiniteOrderBot ι] {a b : ι} (hab : a b) (s : (i : { x : ι // x Finset.Iic b }) → Set (X i)) :