Auxiliary maps for Ionescu-Tulcea theorem #
This file contains auxiliary maps which are used to prove the Ionescu-Tulcea theorem.
def
IocProdIoc
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
(a b c : ι)
(x : ((i : ↥(Finset.Ioc a b)) → X ↑i) × ((i : ↥(Finset.Ioc b c)) → X ↑i))
(i : ↥(Finset.Ioc a c))
:
X ↑i
Gluing Ioc a b and Ioc b c into Ioc a c.
Instances For
theorem
measurable_IocProdIoc
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
[(i : ι) → MeasurableSpace (X i)]
{a b c : ι}
:
Measurable (IocProdIoc a b c)
def
IicProdIoc
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
[LocallyFiniteOrderBot ι]
(a b : ι)
(x : ((i : ↥(Finset.Iic a)) → X ↑i) × ((i : ↥(Finset.Ioc a b)) → X ↑i))
(i : ↥(Finset.Iic b))
:
X ↑i
Gluing Iic a and Ioc a b into Iic b. If b < a, this is just a projection on the first
coordinate followed by a restriction, see IicProdIoc_le.
Instances For
theorem
IicProdIoc_def
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
[LocallyFiniteOrderBot ι]
(a b : ι)
:
IicProdIoc a b = fun (x : ((i : ↥(Finset.Iic a)) → X ↑i) × ((i : ↥(Finset.Ioc a b)) → X ↑i)) (i : ↥(Finset.Iic b)) =>
if h : ↑i ≤ a then x.1 ⟨↑i, ⋯⟩ else x.2 ⟨↑i, ⋯⟩
When IicProdIoc is only partially applied (i.e. IicProdIoc a b x but not
IicProdIoc a b x i) simp [IicProdIoc] won't unfold the definition.
This lemma allows to unfold it by writing simp [IicProdIoc_def].
theorem
frestrictLe₂_comp_IicProdIoc
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
[LocallyFiniteOrderBot ι]
{a b : ι}
(hab : a ≤ b)
:
theorem
restrict₂_comp_IicProdIoc
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
[LocallyFiniteOrderBot ι]
(a b : ι)
:
@[simp]
theorem
IicProdIoc_self
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
[LocallyFiniteOrderBot ι]
(a : ι)
:
theorem
IicProdIoc_le
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
[LocallyFiniteOrderBot ι]
{a b : ι}
(hba : b ≤ a)
:
theorem
IicProdIoc_comp_restrict₂
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
[LocallyFiniteOrderBot ι]
{a b : ι}
:
theorem
measurable_IicProdIoc
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
[LocallyFiniteOrderBot ι]
[(i : ι) → MeasurableSpace (X i)]
{m n : ι}
:
Measurable (IicProdIoc m n)
def
MeasurableEquiv.IicProdIoc
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
[LocallyFiniteOrderBot ι]
[(i : ι) → MeasurableSpace (X i)]
{a b : ι}
(hab : a ≤ b)
:
Gluing Iic a and Ioc a b into Iic b. This version requires a ≤ b to get a measurable
equivalence.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
MeasurableEquiv.coe_IicProdIoc
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
[LocallyFiniteOrderBot ι]
[(i : ι) → MeasurableSpace (X i)]
{a b : ι}
(hab : a ≤ b)
:
theorem
MeasurableEquiv.coe_IicProdIoc_symm
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
[LocallyFiniteOrderBot ι]
[(i : ι) → MeasurableSpace (X i)]
{a b : ι}
(hab : a ≤ b)
:
⇑(IicProdIoc hab).symm = fun (x : (i : ↥(Finset.Iic b)) → X ↑i) => (Preorder.frestrictLe₂ hab x, Finset.restrict₂ ⋯ x)
def
MeasurableEquiv.IicProdIoi
{ι : Type u_1}
[LinearOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
[LocallyFiniteOrderBot ι]
[(i : ι) → MeasurableSpace (X i)]
(a : ι)
:
Gluing Iic a and Ioi a into ℕ, version as a measurable equivalence
on dependent functions.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Identifying {a + 1} with Ioc a (a + 1), as a measurable equiv on dependent functions.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
IocProdIoc_preimage
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
{a b c : ι}
(hab : a ≤ b)
(hbc : b ≤ c)
(s : (i : ↥(Finset.Ioc a c)) → Set (X ↑i))
:
IocProdIoc a b c ⁻¹' Set.univ.pi s = Set.univ.pi (Finset.restrict₂ ⋯ s) ×ˢ Set.univ.pi (Finset.restrict₂ ⋯ s)
theorem
IicProdIoc_preimage
{ι : Type u_1}
[LinearOrder ι]
[LocallyFiniteOrder ι]
[DecidableLE ι]
{X : ι → Type u_2}
[LocallyFiniteOrderBot ι]
{a b : ι}
(hab : a ≤ b)
(s : (i : ↥(Finset.Iic b)) → Set (X ↑i))
:
IicProdIoc a b ⁻¹' Set.univ.pi s = Set.univ.pi (Preorder.frestrictLe₂ hab s) ×ˢ Set.univ.pi (Finset.restrict₂ ⋯ s)