Centering lemma for stochastic processes #
Any ℕ
-indexed stochastic process which is adapted and integrable can be written as the sum of a
martingale and a predictable process. This result is also known as Doob's decomposition theorem.
From a process f
, a filtration ℱ
and a measure μ
, we define two processes
martingalePart f ℱ μ
and predictablePart f ℱ μ
.
Main definitions #
MeasureTheory.predictablePart f ℱ μ
: a predictable process such thatf = predictablePart f ℱ μ + martingalePart f ℱ μ
MeasureTheory.martingalePart f ℱ μ
: a martingale such thatf = predictablePart f ℱ μ + martingalePart f ℱ μ
Main statements #
MeasureTheory.adapted_predictablePart
:(fun n => predictablePart f ℱ μ (n+1))
is adapted. That is,predictablePart
is predictable.MeasureTheory.martingale_martingalePart
:martingalePart f ℱ μ
is a martingale.
noncomputable def
MeasureTheory.predictablePart
{Ω : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{m0 : MeasurableSpace Ω}
(f : ℕ → Ω → E)
(ℱ : Filtration ℕ m0)
(μ : Measure Ω)
:
ℕ → Ω → E
Any ℕ
-indexed stochastic process can be written as the sum of a martingale and a predictable
process. This is the predictable process. See martingalePart
for the martingale.
Equations
- MeasureTheory.predictablePart f ℱ μ n = ∑ i ∈ Finset.range n, MeasureTheory.condexp (↑ℱ i) μ (f (i + 1) - f i)
Instances For
@[simp]
theorem
MeasureTheory.predictablePart_zero
{Ω : Type u_1}
{E : Type u_2}
{m0 : MeasurableSpace Ω}
{μ : Measure Ω}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{f : ℕ → Ω → E}
{ℱ : Filtration ℕ m0}
:
predictablePart f ℱ μ 0 = 0
theorem
MeasureTheory.adapted_predictablePart
{Ω : Type u_1}
{E : Type u_2}
{m0 : MeasurableSpace Ω}
{μ : Measure Ω}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{f : ℕ → Ω → E}
{ℱ : Filtration ℕ m0}
:
Adapted ℱ fun (n : ℕ) => predictablePart f ℱ μ (n + 1)
theorem
MeasureTheory.adapted_predictablePart'
{Ω : Type u_1}
{E : Type u_2}
{m0 : MeasurableSpace Ω}
{μ : Measure Ω}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{f : ℕ → Ω → E}
{ℱ : Filtration ℕ m0}
:
Adapted ℱ fun (n : ℕ) => predictablePart f ℱ μ n
noncomputable def
MeasureTheory.martingalePart
{Ω : Type u_1}
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{m0 : MeasurableSpace Ω}
(f : ℕ → Ω → E)
(ℱ : Filtration ℕ m0)
(μ : Measure Ω)
:
ℕ → Ω → E
Any ℕ
-indexed stochastic process can be written as the sum of a martingale and a predictable
process. This is the martingale. See predictablePart
for the predictable process.
Equations
- MeasureTheory.martingalePart f ℱ μ n = f n - MeasureTheory.predictablePart f ℱ μ n
Instances For
theorem
MeasureTheory.martingalePart_add_predictablePart
{Ω : Type u_1}
{E : Type u_2}
{m0 : MeasurableSpace Ω}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
(ℱ : Filtration ℕ m0)
(μ : Measure Ω)
(f : ℕ → Ω → E)
:
martingalePart f ℱ μ + predictablePart f ℱ μ = f
theorem
MeasureTheory.martingalePart_eq_sum
{Ω : Type u_1}
{E : Type u_2}
{m0 : MeasurableSpace Ω}
{μ : Measure Ω}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{f : ℕ → Ω → E}
{ℱ : Filtration ℕ m0}
:
theorem
MeasureTheory.adapted_martingalePart
{Ω : Type u_1}
{E : Type u_2}
{m0 : MeasurableSpace Ω}
{μ : Measure Ω}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{f : ℕ → Ω → E}
{ℱ : Filtration ℕ m0}
(hf : Adapted ℱ f)
:
Adapted ℱ (martingalePart f ℱ μ)
theorem
MeasureTheory.integrable_martingalePart
{Ω : Type u_1}
{E : Type u_2}
{m0 : MeasurableSpace Ω}
{μ : Measure Ω}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{f : ℕ → Ω → E}
{ℱ : Filtration ℕ m0}
(hf_int : ∀ (n : ℕ), Integrable (f n) μ)
(n : ℕ)
:
Integrable (martingalePart f ℱ μ n) μ
theorem
MeasureTheory.martingale_martingalePart
{Ω : Type u_1}
{E : Type u_2}
{m0 : MeasurableSpace Ω}
{μ : Measure Ω}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{f : ℕ → Ω → E}
{ℱ : Filtration ℕ m0}
(hf : Adapted ℱ f)
(hf_int : ∀ (n : ℕ), Integrable (f n) μ)
[SigmaFiniteFiltration μ ℱ]
:
Martingale (martingalePart f ℱ μ) ℱ μ
theorem
MeasureTheory.martingalePart_add_ae_eq
{Ω : Type u_1}
{E : Type u_2}
{m0 : MeasurableSpace Ω}
{μ : Measure Ω}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{ℱ : Filtration ℕ m0}
[SigmaFiniteFiltration μ ℱ]
{f g : ℕ → Ω → E}
(hf : Martingale f ℱ μ)
(hg : Adapted ℱ fun (n : ℕ) => g (n + 1))
(hg0 : g 0 = 0)
(hgint : ∀ (n : ℕ), Integrable (g n) μ)
(n : ℕ)
:
martingalePart (f + g) ℱ μ n =ᶠ[ae μ] f n
theorem
MeasureTheory.predictablePart_add_ae_eq
{Ω : Type u_1}
{E : Type u_2}
{m0 : MeasurableSpace Ω}
{μ : Measure Ω}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[CompleteSpace E]
{ℱ : Filtration ℕ m0}
[SigmaFiniteFiltration μ ℱ]
{f g : ℕ → Ω → E}
(hf : Martingale f ℱ μ)
(hg : Adapted ℱ fun (n : ℕ) => g (n + 1))
(hg0 : g 0 = 0)
(hgint : ∀ (n : ℕ), Integrable (g n) μ)
(n : ℕ)
:
predictablePart (f + g) ℱ μ n =ᶠ[ae μ] g n
theorem
MeasureTheory.predictablePart_bdd_difference
{Ω : Type u_1}
{m0 : MeasurableSpace Ω}
{μ : Measure Ω}
{R : NNReal}
{f : ℕ → Ω → ℝ}
(ℱ : Filtration ℕ m0)
(hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R)
:
∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R
theorem
MeasureTheory.martingalePart_bdd_difference
{Ω : Type u_1}
{m0 : MeasurableSpace Ω}
{μ : Measure Ω}
{R : NNReal}
{f : ℕ → Ω → ℝ}
(ℱ : Filtration ℕ m0)
(hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R)
:
∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |martingalePart f ℱ μ (i + 1) ω - martingalePart f ℱ μ i ω| ≤ ↑(2 * R)