Covariance #
We define the covariance of two real-valued random variables.
Main definitions #
covariance
: covariance of two real-valued random variables, with notationcov[X, Y; μ]
.cov[X, Y; μ] = ∫ ω, (X ω - μ[X]) * (Y ω - μ[Y]) ∂μ
.
Main statements #
covariance_same
:cov[X, X; μ] = Var[X; μ]
Notation #
cov[X, Y; μ] = covariance X Y μ
cov[X, Y] = covariance X Y volume
noncomputable def
ProbabilityTheory.covariance
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
(X Y : Ω → ℝ)
(μ : MeasureTheory.Measure Ω)
:
The covariance of two real-valued random variables defined as
the integral of (X - 𝔼[X])(Y - 𝔼[Y])
.
Equations
Instances For
The covariance of two real-valued random variables defined as
the integral of (X - 𝔼[X])(Y - 𝔼[Y])
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The covariance of the real-valued random variables X
and Y
according to the volume measure.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
ProbabilityTheory.covariance_same
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{X : Ω → ℝ}
(hX : AEMeasurable X μ)
:
@[simp]
theorem
ProbabilityTheory.covariance_zero_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
:
@[simp]
theorem
ProbabilityTheory.covariance_zero_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
:
@[simp]
theorem
ProbabilityTheory.covariance_zero_measure
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
:
theorem
ProbabilityTheory.covariance_comm
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
(X Y : Ω → ℝ)
{μ : MeasureTheory.Measure Ω}
:
@[simp]
theorem
ProbabilityTheory.covariance_const_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_const_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_add_const_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hX : MeasureTheory.Integrable X μ)
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_const_add_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hX : MeasureTheory.Integrable X μ)
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_add_const_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hY : MeasureTheory.Integrable Y μ)
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_const_add_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hY : MeasureTheory.Integrable Y μ)
(c : ℝ)
:
theorem
ProbabilityTheory.covariance_add_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y Z : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
:
theorem
ProbabilityTheory.covariance_add_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y Z : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
:
theorem
ProbabilityTheory.covariance_smul_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
(c : ℝ)
:
theorem
ProbabilityTheory.covariance_smul_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_neg_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
:
@[simp]
theorem
ProbabilityTheory.covariance_fun_neg_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
:
@[simp]
theorem
ProbabilityTheory.covariance_neg_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
:
@[simp]
theorem
ProbabilityTheory.covariance_fun_neg_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
:
theorem
ProbabilityTheory.covariance_sub_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y Z : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
:
theorem
ProbabilityTheory.covariance_sub_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y Z : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
:
@[simp]
theorem
ProbabilityTheory.covariance_sub_const_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hX : MeasureTheory.Integrable X μ)
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_const_sub_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hX : MeasureTheory.Integrable X μ)
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_sub_const_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hY : MeasureTheory.Integrable Y μ)
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_const_sub_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hY : MeasureTheory.Integrable Y μ)
(c : ℝ)
: