Covariance #
We define the covariance of two real-valued random variables.
Main definitions #
covariance
: covariance of two real-valued random variables, with notationcov[X, Y; μ]
.cov[X, Y; μ] = ∫ ω, (X ω - μ[X]) * (Y ω - μ[Y]) ∂μ
.
Main statements #
covariance_self
:cov[X, X; μ] = Var[X; μ]
Notation #
cov[X, Y; μ] = covariance X Y μ
cov[X, Y] = covariance X Y volume
noncomputable def
ProbabilityTheory.covariance
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
(X Y : Ω → ℝ)
(μ : MeasureTheory.Measure Ω)
:
The covariance of two real-valued random variables defined as
the integral of (X - 𝔼[X])(Y - 𝔼[Y])
.
Equations
Instances For
The covariance of two real-valued random variables defined as
the integral of (X - 𝔼[X])(Y - 𝔼[Y])
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The covariance of the real-valued random variables X
and Y
according to the volume measure.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
ProbabilityTheory.covariance_eq_sub
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
@[simp]
theorem
ProbabilityTheory.covariance_zero_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
:
@[simp]
theorem
ProbabilityTheory.covariance_zero_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
:
@[simp]
theorem
ProbabilityTheory.covariance_zero_measure
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
:
theorem
ProbabilityTheory.covariance_comm
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
(X Y : Ω → ℝ)
{μ : MeasureTheory.Measure Ω}
:
@[simp]
theorem
ProbabilityTheory.covariance_const_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_const_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_add_const_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hX : MeasureTheory.Integrable X μ)
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_const_add_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hX : MeasureTheory.Integrable X μ)
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_add_const_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hY : MeasureTheory.Integrable Y μ)
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_const_add_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hY : MeasureTheory.Integrable Y μ)
(c : ℝ)
:
theorem
ProbabilityTheory.covariance_add_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y Z : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
:
theorem
ProbabilityTheory.covariance_add_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y Z : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
:
theorem
ProbabilityTheory.covariance_smul_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
(c : ℝ)
:
theorem
ProbabilityTheory.covariance_smul_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
(c : ℝ)
:
theorem
ProbabilityTheory.covariance_mul_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
(c : ℝ)
:
theorem
ProbabilityTheory.covariance_mul_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_neg_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
:
@[simp]
theorem
ProbabilityTheory.covariance_fun_neg_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
:
@[simp]
theorem
ProbabilityTheory.covariance_neg_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
:
@[simp]
theorem
ProbabilityTheory.covariance_fun_neg_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
:
theorem
ProbabilityTheory.covariance_sub_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y Z : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
:
theorem
ProbabilityTheory.covariance_sub_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y Z : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsFiniteMeasure μ]
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
(hZ : MeasureTheory.MemLp Z 2 μ)
:
@[simp]
theorem
ProbabilityTheory.covariance_sub_const_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hX : MeasureTheory.Integrable X μ)
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_const_sub_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hX : MeasureTheory.Integrable X μ)
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_sub_const_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hY : MeasureTheory.Integrable Y μ)
(c : ℝ)
:
@[simp]
theorem
ProbabilityTheory.covariance_const_sub_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
[MeasureTheory.IsProbabilityMeasure μ]
(hY : MeasureTheory.Integrable Y μ)
(c : ℝ)
:
theorem
ProbabilityTheory.covariance_sum_left'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
[MeasureTheory.IsFiniteMeasure μ]
(hX : ∀ i ∈ s, MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_sum_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
[Fintype ι]
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_fun_sum_left'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
[MeasureTheory.IsFiniteMeasure μ]
(hX : ∀ i ∈ s, MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_fun_sum_left
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
[Fintype ι]
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_sum_right'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
[MeasureTheory.IsFiniteMeasure μ]
(hX : ∀ i ∈ s, MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_sum_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
[Fintype ι]
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_fun_sum_right'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
[MeasureTheory.IsFiniteMeasure μ]
(hX : ∀ i ∈ s, MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_fun_sum_right
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
[Fintype ι]
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
:
theorem
ProbabilityTheory.covariance_sum_sum'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
[MeasureTheory.IsFiniteMeasure μ]
{ι' : Type u_3}
{Y : ι' → Ω → ℝ}
{t : Finset ι'}
(hX : ∀ i ∈ s, MeasureTheory.MemLp (X i) 2 μ)
(hY : ∀ i ∈ t, MeasureTheory.MemLp (Y i) 2 μ)
:
theorem
ProbabilityTheory.covariance_sum_sum
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
[Fintype ι]
{ι' : Type u_3}
[Fintype ι']
{Y : ι' → Ω → ℝ}
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(hY : ∀ (i : ι'), MeasureTheory.MemLp (Y i) 2 μ)
:
theorem
ProbabilityTheory.covariance_fun_sum_fun_sum'
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
{s : Finset ι}
[MeasureTheory.IsFiniteMeasure μ]
{ι' : Type u_3}
{Y : ι' → Ω → ℝ}
{t : Finset ι'}
(hX : ∀ i ∈ s, MeasureTheory.MemLp (X i) 2 μ)
(hY : ∀ i ∈ t, MeasureTheory.MemLp (Y i) 2 μ)
:
covariance (fun (ω : Ω) => ∑ i ∈ s, X i ω) (fun (ω : Ω) => ∑ j ∈ t, Y j ω) μ = ∑ i ∈ s, ∑ j ∈ t, covariance (X i) (Y j) μ
theorem
ProbabilityTheory.covariance_fun_sum_fun_sum
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{μ : MeasureTheory.Measure Ω}
{ι : Type u_2}
{X : ι → Ω → ℝ}
[MeasureTheory.IsFiniteMeasure μ]
[Fintype ι]
{ι' : Type u_3}
[Fintype ι']
{Y : ι' → Ω → ℝ}
(hX : ∀ (i : ι), MeasureTheory.MemLp (X i) 2 μ)
(hY : ∀ (i : ι'), MeasureTheory.MemLp (Y i) 2 μ)
:
covariance (fun (ω : Ω) => ∑ i : ι, X i ω) (fun (ω : Ω) => ∑ j : ι', Y j ω) μ = ∑ i : ι, ∑ j : ι', covariance (X i) (Y j) μ
theorem
ProbabilityTheory.covariance_map_equiv
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{Ω' : Type u_2}
{mΩ' : MeasurableSpace Ω'}
{μ : MeasureTheory.Measure Ω'}
(X Y : Ω → ℝ)
(Z : Ω' ≃ᵐ Ω)
:
theorem
ProbabilityTheory.covariance_map
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{Ω' : Type u_2}
{mΩ' : MeasurableSpace Ω'}
{μ : MeasureTheory.Measure Ω'}
{Z : Ω' → Ω}
(hX : MeasureTheory.AEStronglyMeasurable X (MeasureTheory.Measure.map Z μ))
(hY : MeasureTheory.AEStronglyMeasurable Y (MeasureTheory.Measure.map Z μ))
(hZ : AEMeasurable Z μ)
:
theorem
ProbabilityTheory.covariance_map_fun
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{Ω' : Type u_2}
{mΩ' : MeasurableSpace Ω'}
{μ : MeasureTheory.Measure Ω'}
{Z : Ω' → Ω}
(hX : MeasureTheory.AEStronglyMeasurable X (MeasureTheory.Measure.map Z μ))
(hY : MeasureTheory.AEStronglyMeasurable Y (MeasureTheory.Measure.map Z μ))
(hZ : AEMeasurable Z μ)
:
covariance X Y (MeasureTheory.Measure.map Z μ) = covariance (fun (ω : Ω') => X (Z ω)) (fun (ω : Ω') => Y (Z ω)) μ
theorem
ProbabilityTheory.IndepFun.covariance_eq_zero
{Ω : Type u_1}
{mΩ : MeasurableSpace Ω}
{X Y : Ω → ℝ}
{μ : MeasureTheory.Measure Ω}
(h : IndepFun X Y μ)
(hX : MeasureTheory.MemLp X 2 μ)
(hY : MeasureTheory.MemLp Y 2 μ)
: