Domain of the moment generating function #
For X
a real random variable and μ
a finite measure, the set
{t | Integrable (fun ω ↦ exp (t * X ω)) μ}
is an interval containing zero. This is the set of
points for which the moment generating function mgf X μ t
is well defined.
We denote that set by integrableExpSet X μ
.
We prove the integrability of other functions for t
in the interior of that interval.
Main definitions #
ProbabilityTheory.IntegrableExpSet
: the interval of reals for whichexp (t * X)
is integrable.
Main results #
ProbabilityTheory.integrable_exp_mul_of_le_of_le
: ifexp (u * X)
is integrable foru = a
andu = b
then it is integrable on[a, b]
.ProbabilityTheory.convex_integrableExpSet
:integrableExpSet X μ
is a convex set.ProbabilityTheory.integrable_exp_mul_of_nonpos_of_ge
: ifexp (u * X)
is integrable foru ≤ 0
then it is integrable on[u, 0]
.ProbabilityTheory.integrable_rpow_abs_mul_exp_of_mem_interior
: forv
in the interior of the interval in whichexp (t * X)
is integrable, for all nonnegativep : ℝ
,|X| ^ p * exp (v * X)
is integrable.ProbabilityTheory.memℒp_of_mem_interior_integrableExpSet
: if 0 belongs to the interior ofintegrableExpSet X μ
, thenX
is inℒp
for all finitep
.
If ω ↦ exp (u * X ω)
is integrable at u
and -u
, then it is integrable on [-u, u]
.
If ω ↦ exp (u * X ω)
is integrable at u ≥ 0
, then it is integrable on [0, u]
.
If ω ↦ exp (u * X ω)
is integrable at u ≤ 0
, then it is integrable on [u, 0]
.
The interval of reals t
for which exp (t * X)
is integrable.
Equations
- ProbabilityTheory.integrableExpSet X μ = {t : ℝ | MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ}
Instances For
integrableExpSet X μ
is a convex subset of ℝ
(it is an interval).
If exp ((v + t) * X)
and exp ((v - t) * X)
are integrable, then
ω ↦ exp (t * |X| + v * X)
is integrable.
If ω ↦ exp (t * X ω)
is integrable at t
and -t
, then ω ↦ exp (t * |X ω|)
is
integrable.
If exp ((v + t) * X)
and exp ((v - t) * X)
are integrable, then
ω ↦ exp (|t| * |X| + v * X)
is integrable.
If ω ↦ exp (t * X ω)
is integrable at t
and -t
, then ω ↦ exp (|t| * |X ω|)
is
integrable.
If exp ((v + t) * X)
and exp ((v - t) * X)
are integrable
then for nonnegative p : ℝ
and any x ∈ [0, |t|)
,
|X| ^ p * exp (v * X + x * |X|)
is integrable.
If exp ((v + t) * X)
and exp ((v - t) * X)
are integrable
then for any n : ℕ
and any x ∈ [0, |t|)
,
|X| ^ n * exp (v * X + x * |X|)
is integrable.
If exp ((v + t) * X)
and exp ((v - t) * X)
are integrable
then for nonnegative p : ℝ
, |X| ^ p * exp (v * X)
is integrable.
If exp ((v + t) * X)
and exp ((v - t) * X)
are integrable, then for all n : ℕ
,
|X| ^ n * exp (v * X)
is integrable.
If exp ((v + t) * X)
and exp ((v - t) * X)
are integrable, then for all nonnegative p : ℝ
,
X ^ p * exp (v * X)
is integrable.
If exp ((v + t) * X)
and exp ((v - t) * X)
are integrable, then for all n : ℕ
,
X ^ n * exp (v * X)
is integrable.
If ω ↦ exp (t * X ω)
is integrable at t
and -t
for t ≠ 0
, then ω ↦ |X ω| ^ p
is
integrable for all nonnegative p : ℝ
.
If ω ↦ exp (t * X ω)
is integrable at t
and -t
for t ≠ 0
, then ω ↦ |X ω| ^ n
is
integrable for all n : ℕ
. That is, all moments of X
are finite.
If ω ↦ exp (t * X ω)
is integrable at t
and -t
for t ≠ 0
, then ω ↦ X ω ^ p
is
integrable for all nonnegative p : ℝ
.
If ω ↦ exp (t * X ω)
is integrable at t
and -t
for t ≠ 0
, then ω ↦ X ω ^ n
is
integrable for all n : ℕ
.
If the interior of the interval integrableExpSet X μ
is nonempty,
then X
is a.e. measurable.
If v
belongs to the interior of the interval integrableExpSet X μ
,
then |X| ^ p * exp (v * X)
is integrable for all nonnegative p : ℝ
.
If v
belongs to the interior of the interval integrableExpSet X μ
,
then |X| ^ n * exp (v * X)
is integrable for all n : ℕ
.
If v
belongs to the interior of the interval integrableExpSet X μ
,
then X ^ p * exp (v * X)
is integrable for all nonnegative p : ℝ
.
If v
belongs to the interior of the interval integrableExpSet X μ
,
then X ^ n * exp (v * X)
is integrable for all n : ℕ
.
If 0 belongs to the interior of the interval integrableExpSet X μ
,
then |X| ^ n
is integrable for all nonnegative p : ℝ
.
If 0 belongs to the interior of the interval integrableExpSet X μ
,
then |X| ^ n
is integrable for all n : ℕ
.
If 0 belongs to the interior of the interval integrableExpSet X μ
,
then X ^ n
is integrable for all nonnegative p : ℝ
.
If 0 belongs to the interior of the interval integrableExpSet X μ
,
then X ^ n
is integrable for all n : ℕ
.
If 0 belongs to the interior of integrableExpSet X μ
, then X
is in ℒp
for all
finite p
.