Documentation

Mathlib.Probability.Moments.IntegrableExpMul

Domain of the moment generating function #

For X a real random variable and μ a finite measure, the set {t | Integrable (fun ω ↦ exp (t * X ω)) μ} is an interval containing zero. This is the set of points for which the moment generating function mgf X μ t is well defined. We denote that set by integrableExpSet X μ.

We prove the integrability of other functions for t in the interior of that interval.

Main definitions #

Main results #

theorem ProbabilityTheory.integrable_exp_mul_of_le_of_le {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t a b : Real} (ha : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul a (X ω))) μ) (hb : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul b (X ω))) μ) (hat : LE.le a t) (htb : LE.le t b) :
MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul t (X ω))) μ
theorem ProbabilityTheory.integrable_exp_mul_of_abs_le {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t u : Real} (hu_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul u (X ω))) μ) (hu_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (Neg.neg u) (X ω))) μ) (htu : LE.le (abs t) (abs u)) :
MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul t (X ω))) μ

If ω ↦ exp (u * X ω) is integrable at u and -u, then it is integrable on [-u, u].

theorem ProbabilityTheory.integrable_exp_mul_of_nonneg_of_le {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t u : Real} [MeasureTheory.IsFiniteMeasure μ] (hu : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul u (X ω))) μ) (h_nonneg : LE.le 0 t) (htu : LE.le t u) :
MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul t (X ω))) μ

If ω ↦ exp (u * X ω) is integrable at u ≥ 0, then it is integrable on [0, u].

theorem ProbabilityTheory.integrable_exp_mul_of_nonpos_of_ge {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t u : Real} [MeasureTheory.IsFiniteMeasure μ] (hu : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul u (X ω))) μ) (h_nonpos : LE.le t 0) (htu : LE.le u t) :
MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul t (X ω))) μ

If ω ↦ exp (u * X ω) is integrable at u ≤ 0, then it is integrable on [u, 0].

The interval of reals t for which exp (t * X) is integrable.

Equations
Instances For

    integrableExpSet X μ is a convex subset of (it is an interval).

    theorem ProbabilityTheory.aemeasurable_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {u v : Real} (huv : Ne u v) (hu_int : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul u (X ω))) μ) (hv_int : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul v (X ω))) μ) :
    theorem ProbabilityTheory.integrable_exp_mul_abs_add {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t v : Real} (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HAdd.hAdd v t) (X ω))) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HSub.hSub v t) (X ω))) μ) :
    MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HAdd.hAdd (HMul.hMul t (abs (X ω))) (HMul.hMul v (X ω)))) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable, then ω ↦ exp (t * |X| + v * X) is integrable.

    theorem ProbabilityTheory.integrable_exp_mul_abs {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t : Real} (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul t (X ω))) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (Neg.neg t) (X ω))) μ) :
    MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul t (abs (X ω)))) μ

    If ω ↦ exp (t * X ω) is integrable at t and -t, then ω ↦ exp (t * |X ω|) is integrable.

    theorem ProbabilityTheory.integrable_exp_abs_mul_abs_add {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t v : Real} (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HAdd.hAdd v t) (X ω))) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HSub.hSub v t) (X ω))) μ) :
    MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HAdd.hAdd (HMul.hMul (abs t) (abs (X ω))) (HMul.hMul v (X ω)))) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable, then ω ↦ exp (|t| * |X| + v * X) is integrable.

    theorem ProbabilityTheory.integrable_exp_abs_mul_abs {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t : Real} (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul t (X ω))) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (Neg.neg t) (X ω))) μ) :
    MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (abs t) (abs (X ω)))) μ

    If ω ↦ exp (t * X ω) is integrable at t and -t, then ω ↦ exp (|t| * |X ω|) is integrable.

    theorem ProbabilityTheory.rpow_abs_le_mul_exp_abs (x : Real) {t p : Real} (hp : LE.le 0 p) (ht : Ne t 0) :
    theorem ProbabilityTheory.integrable_rpow_abs_mul_exp_add_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t v x : Real} (h_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HAdd.hAdd v t) (X ω))) μ) (h_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HSub.hSub v t) (X ω))) μ) (h_nonneg : LE.le 0 x) (hx : LT.lt x (abs t)) {p : Real} (hp : LE.le 0 p) :
    MeasureTheory.Integrable (fun (a : Ω) => HMul.hMul (HPow.hPow (abs (X a)) p) (Real.exp (HAdd.hAdd (HMul.hMul v (X a)) (HMul.hMul x (abs (X a)))))) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable then for nonnegative p : ℝ and any x ∈ [0, |t|), |X| ^ p * exp (v * X + x * |X|) is integrable.

    theorem ProbabilityTheory.integrable_pow_abs_mul_exp_add_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t v x : Real} (h_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HAdd.hAdd v t) (X ω))) μ) (h_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HSub.hSub v t) (X ω))) μ) (h_nonneg : LE.le 0 x) (hx : LT.lt x (abs t)) (n : Nat) :
    MeasureTheory.Integrable (fun (a : Ω) => HMul.hMul (HPow.hPow (abs (X a)) n) (Real.exp (HAdd.hAdd (HMul.hMul v (X a)) (HMul.hMul x (abs (X a)))))) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable then for any n : ℕ and any x ∈ [0, |t|), |X| ^ n * exp (v * X + x * |X|) is integrable.

    theorem ProbabilityTheory.integrable_rpow_abs_mul_exp_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t v : Real} (ht : Ne t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HAdd.hAdd v t) (X ω))) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HSub.hSub v t) (X ω))) μ) {p : Real} (hp : LE.le 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => HMul.hMul (HPow.hPow (abs (X ω)) p) (Real.exp (HMul.hMul v (X ω)))) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable then for nonnegative p : ℝ, |X| ^ p * exp (v * X) is integrable.

    theorem ProbabilityTheory.integrable_pow_abs_mul_exp_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t v : Real} (ht : Ne t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HAdd.hAdd v t) (X ω))) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HSub.hSub v t) (X ω))) μ) (n : Nat) :
    MeasureTheory.Integrable (fun (ω : Ω) => HMul.hMul (HPow.hPow (abs (X ω)) n) (Real.exp (HMul.hMul v (X ω)))) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable, then for all n : ℕ, |X| ^ n * exp (v * X) is integrable.

    theorem ProbabilityTheory.integrable_rpow_mul_exp_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t v : Real} (ht : Ne t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HAdd.hAdd v t) (X ω))) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HSub.hSub v t) (X ω))) μ) {p : Real} (hp : LE.le 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => HMul.hMul (HPow.hPow (X ω) p) (Real.exp (HMul.hMul v (X ω)))) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable, then for all nonnegative p : ℝ, X ^ p * exp (v * X) is integrable.

    theorem ProbabilityTheory.integrable_pow_mul_exp_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t v : Real} (ht : Ne t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HAdd.hAdd v t) (X ω))) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (HSub.hSub v t) (X ω))) μ) (n : Nat) :
    MeasureTheory.Integrable (fun (ω : Ω) => HMul.hMul (HPow.hPow (X ω) n) (Real.exp (HMul.hMul v (X ω)))) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable, then for all n : ℕ, X ^ n * exp (v * X) is integrable.

    theorem ProbabilityTheory.integrable_rpow_abs_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t : Real} (ht : Ne t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul t (X ω))) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (Neg.neg t) (X ω))) μ) {p : Real} (hp : LE.le 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => HPow.hPow (abs (X ω)) p) μ

    If ω ↦ exp (t * X ω) is integrable at t and -t for t ≠ 0, then ω ↦ |X ω| ^ p is integrable for all nonnegative p : ℝ.

    theorem ProbabilityTheory.integrable_pow_abs_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t : Real} (ht : Ne t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul t (X ω))) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (Neg.neg t) (X ω))) μ) (n : Nat) :
    MeasureTheory.Integrable (fun (ω : Ω) => HPow.hPow (abs (X ω)) n) μ

    If ω ↦ exp (t * X ω) is integrable at t and -t for t ≠ 0, then ω ↦ |X ω| ^ n is integrable for all n : ℕ. That is, all moments of X are finite.

    theorem ProbabilityTheory.integrable_rpow_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t : Real} (ht : Ne t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul t (X ω))) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (Neg.neg t) (X ω))) μ) {p : Real} (hp : LE.le 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => HPow.hPow (X ω) p) μ

    If ω ↦ exp (t * X ω) is integrable at t and -t for t ≠ 0, then ω ↦ X ω ^ p is integrable for all nonnegative p : ℝ.

    theorem ProbabilityTheory.integrable_pow_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {t : Real} (ht : Ne t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul t (X ω))) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (HMul.hMul (Neg.neg t) (X ω))) μ) (n : Nat) :
    MeasureTheory.Integrable (fun (ω : Ω) => HPow.hPow (X ω) n) μ

    If ω ↦ exp (t * X ω) is integrable at t and -t for t ≠ 0, then ω ↦ X ω ^ n is integrable for all n : ℕ.

    If the interior of the interval integrableExpSet X μ is nonempty, then X is a.e. measurable.

    theorem ProbabilityTheory.integrable_rpow_abs_mul_exp_of_mem_interior_integrableExpSet {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {v : Real} (hv : Membership.mem (interior (integrableExpSet X μ)) v) {p : Real} (hp : LE.le 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => HMul.hMul (HPow.hPow (abs (X ω)) p) (Real.exp (HMul.hMul v (X ω)))) μ

    If v belongs to the interior of the interval integrableExpSet X μ, then |X| ^ p * exp (v * X) is integrable for all nonnegative p : ℝ.

    If v belongs to the interior of the interval integrableExpSet X μ, then |X| ^ n * exp (v * X) is integrable for all n : ℕ.

    theorem ProbabilityTheory.integrable_rpow_mul_exp_of_mem_interior_integrableExpSet {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} {v : Real} (hv : Membership.mem (interior (integrableExpSet X μ)) v) {p : Real} (hp : LE.le 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => HMul.hMul (HPow.hPow (X ω) p) (Real.exp (HMul.hMul v (X ω)))) μ

    If v belongs to the interior of the interval integrableExpSet X μ, then X ^ p * exp (v * X) is integrable for all nonnegative p : ℝ.

    If v belongs to the interior of the interval integrableExpSet X μ, then X ^ n * exp (v * X) is integrable for all n : ℕ.

    If 0 belongs to the interior of the interval integrableExpSet X μ, then |X| ^ n is integrable for all nonnegative p : ℝ.

    If 0 belongs to the interior of the interval integrableExpSet X μ, then |X| ^ n is integrable for all n : ℕ.

    theorem ProbabilityTheory.integrable_rpow_of_mem_interior_integrableExpSet {Ω : Type u_1} {m : MeasurableSpace Ω} {X : ΩReal} {μ : MeasureTheory.Measure Ω} (h : Membership.mem (interior (integrableExpSet X μ)) 0) {p : Real} (hp : LE.le 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => HPow.hPow (X ω) p) μ

    If 0 belongs to the interior of the interval integrableExpSet X μ, then X ^ n is integrable for all nonnegative p : ℝ.

    If 0 belongs to the interior of the interval integrableExpSet X μ, then X ^ n is integrable for all n : ℕ.

    If 0 belongs to the interior of integrableExpSet X μ, then X is in ℒp for all finite p.

    @[deprecated ProbabilityTheory.memLp_of_mem_interior_integrableExpSet (since := "2025-02-21")]

    Alias of ProbabilityTheory.memLp_of_mem_interior_integrableExpSet.


    If 0 belongs to the interior of integrableExpSet X μ, then X is in ℒp for all finite p.