Documentation

Mathlib.Probability.Moments.IntegrableExpMul

Domain of the moment generating function #

For X a real random variable and μ a finite measure, the set {t | Integrable (fun ω ↦ exp (t * X ω)) μ} is an interval containing zero. This is the set of points for which the moment generating function mgf X μ t is well defined. We denote that set by integrableExpSet X μ.

We prove the integrability of other functions for t in the interior of that interval.

Main definitions #

Main results #

theorem ProbabilityTheory.integrable_exp_mul_of_le_of_le {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t a b : } (ha : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (a * X ω)) μ) (hb : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (b * X ω)) μ) (hat : a t) (htb : t b) :
MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ
theorem ProbabilityTheory.integrable_exp_mul_of_abs_le {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t u : } (hu_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (u * X ω)) μ) (hu_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (-u * X ω)) μ) (htu : |t| |u|) :
MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ

If ω ↦ exp (u * X ω) is integrable at u and -u, then it is integrable on [-u, u].

theorem ProbabilityTheory.integrable_exp_mul_of_nonneg_of_le {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t u : } [MeasureTheory.IsFiniteMeasure μ] (hu : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (u * X ω)) μ) (h_nonneg : 0 t) (htu : t u) :
MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ

If ω ↦ exp (u * X ω) is integrable at u ≥ 0, then it is integrable on [0, u].

theorem ProbabilityTheory.integrable_exp_mul_of_nonpos_of_ge {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t u : } [MeasureTheory.IsFiniteMeasure μ] (hu : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (u * X ω)) μ) (h_nonpos : t 0) (htu : u t) :
MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ

If ω ↦ exp (u * X ω) is integrable at u ≤ 0, then it is integrable on [u, 0].

The interval of reals t for which exp (t * X) is integrable.

Equations
Instances For
    theorem ProbabilityTheory.integrable_of_mem_integrableExpSet {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (h : t integrableExpSet X μ) :
    MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ

    integrableExpSet X μ is a convex subset of (it is an interval).

    theorem ProbabilityTheory.aemeasurable_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {u v : } (huv : u v) (hu_int : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (u * X ω)) μ) (hv_int : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (v * X ω)) μ) :
    theorem ProbabilityTheory.integrable_exp_mul_abs_add {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t v : } (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v + t) * X ω)) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v - t) * X ω)) μ) :
    MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * |X ω| + v * X ω)) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable, then ω ↦ exp (t * |X| + v * X) is integrable.

    theorem ProbabilityTheory.integrable_exp_mul_abs {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (-t * X ω)) μ) :
    MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * |X ω|)) μ

    If ω ↦ exp (t * X ω) is integrable at t and -t, then ω ↦ exp (t * |X ω|) is integrable.

    theorem ProbabilityTheory.integrable_exp_abs_mul_abs_add {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t v : } (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v + t) * X ω)) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v - t) * X ω)) μ) :
    MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (|t| * |X ω| + v * X ω)) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable, then ω ↦ exp (|t| * |X| + v * X) is integrable.

    theorem ProbabilityTheory.integrable_exp_abs_mul_abs {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (-t * X ω)) μ) :
    MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (|t| * |X ω|)) μ

    If ω ↦ exp (t * X ω) is integrable at t and -t, then ω ↦ exp (|t| * |X ω|) is integrable.

    theorem ProbabilityTheory.rpow_abs_le_mul_max_exp_of_pos (x : ) {t p : } (hp : 0 p) (ht : 0 < t) :
    |x| ^ p (p / t) ^ p * (Real.exp (t * x) Real.exp (-t * x))

    Auxiliary lemma for rpow_abs_le_mul_max_exp.

    theorem ProbabilityTheory.rpow_abs_le_mul_max_exp (x : ) {t p : } (hp : 0 p) (ht : t 0) :
    |x| ^ p (p / |t|) ^ p * (Real.exp (t * x) Real.exp (-t * x))
    theorem ProbabilityTheory.rpow_abs_le_mul_exp_abs (x : ) {t p : } (hp : 0 p) (ht : t 0) :
    |x| ^ p (p / |t|) ^ p * Real.exp (|t| * |x|)
    theorem ProbabilityTheory.integrable_rpow_abs_mul_exp_add_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t v x : } (h_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v + t) * X ω)) μ) (h_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v - t) * X ω)) μ) (h_nonneg : 0 x) (hx : x < |t|) {p : } (hp : 0 p) :
    MeasureTheory.Integrable (fun (a : Ω) => |X a| ^ p * Real.exp (v * X a + x * |X a|)) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable then for nonnegative p : ℝ and any x ∈ [0, |t|), |X| ^ p * exp (v * X + x * |X|) is integrable.

    theorem ProbabilityTheory.integrable_pow_abs_mul_exp_add_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t v x : } (h_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v + t) * X ω)) μ) (h_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v - t) * X ω)) μ) (h_nonneg : 0 x) (hx : x < |t|) (n : ) :
    MeasureTheory.Integrable (fun (a : Ω) => |X a| ^ n * Real.exp (v * X a + x * |X a|)) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable then for any n : ℕ and any x ∈ [0, |t|), |X| ^ n * exp (v * X + x * |X|) is integrable.

    theorem ProbabilityTheory.integrable_rpow_abs_mul_exp_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t v : } (ht : t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v + t) * X ω)) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v - t) * X ω)) μ) {p : } (hp : 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => |X ω| ^ p * Real.exp (v * X ω)) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable then for nonnegative p : ℝ, |X| ^ p * exp (v * X) is integrable.

    theorem ProbabilityTheory.integrable_pow_abs_mul_exp_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t v : } (ht : t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v + t) * X ω)) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v - t) * X ω)) μ) (n : ) :
    MeasureTheory.Integrable (fun (ω : Ω) => |X ω| ^ n * Real.exp (v * X ω)) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable, then for all n : ℕ, |X| ^ n * exp (v * X) is integrable.

    theorem ProbabilityTheory.integrable_rpow_mul_exp_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t v : } (ht : t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v + t) * X ω)) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v - t) * X ω)) μ) {p : } (hp : 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => X ω ^ p * Real.exp (v * X ω)) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable, then for all nonnegative p : ℝ, X ^ p * exp (v * X) is integrable.

    theorem ProbabilityTheory.integrable_pow_mul_exp_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t v : } (ht : t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v + t) * X ω)) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp ((v - t) * X ω)) μ) (n : ) :
    MeasureTheory.Integrable (fun (ω : Ω) => X ω ^ n * Real.exp (v * X ω)) μ

    If exp ((v + t) * X) and exp ((v - t) * X) are integrable, then for all n : ℕ, X ^ n * exp (v * X) is integrable.

    theorem ProbabilityTheory.integrable_rpow_abs_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (ht : t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (-t * X ω)) μ) {p : } (hp : 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => |X ω| ^ p) μ

    If ω ↦ exp (t * X ω) is integrable at t and -t for t ≠ 0, then ω ↦ |X ω| ^ p is integrable for all nonnegative p : ℝ.

    theorem ProbabilityTheory.integrable_pow_abs_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (ht : t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (-t * X ω)) μ) (n : ) :
    MeasureTheory.Integrable (fun (ω : Ω) => |X ω| ^ n) μ

    If ω ↦ exp (t * X ω) is integrable at t and -t for t ≠ 0, then ω ↦ |X ω| ^ n is integrable for all n : ℕ. That is, all moments of X are finite.

    theorem ProbabilityTheory.integrable_rpow_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (ht : t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (-t * X ω)) μ) {p : } (hp : 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => X ω ^ p) μ

    If ω ↦ exp (t * X ω) is integrable at t and -t for t ≠ 0, then ω ↦ X ω ^ p is integrable for all nonnegative p : ℝ.

    theorem ProbabilityTheory.integrable_pow_of_integrable_exp_mul {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {t : } (ht : t 0) (ht_int_pos : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (t * X ω)) μ) (ht_int_neg : MeasureTheory.Integrable (fun (ω : Ω) => Real.exp (-t * X ω)) μ) (n : ) :
    MeasureTheory.Integrable (fun (ω : Ω) => X ω ^ n) μ

    If ω ↦ exp (t * X ω) is integrable at t and -t for t ≠ 0, then ω ↦ X ω ^ n is integrable for all n : ℕ.

    theorem ProbabilityTheory.add_half_inf_sub_mem_Ioo {l u v : } (hv : v Set.Ioo l u) :
    v + ((v - l) (u - v)) / 2 Set.Ioo l u
    theorem ProbabilityTheory.sub_half_inf_sub_mem_Ioo {l u v : } (hv : v Set.Ioo l u) :
    v - ((v - l) (u - v)) / 2 Set.Ioo l u

    If the interior of the interval integrableExpSet X μ is nonempty, then X is a.e. measurable.

    theorem ProbabilityTheory.integrable_rpow_abs_mul_exp_of_mem_interior_integrableExpSet {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {v : } (hv : v interior (integrableExpSet X μ)) {p : } (hp : 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => |X ω| ^ p * Real.exp (v * X ω)) μ

    If v belongs to the interior of the interval integrableExpSet X μ, then |X| ^ p * exp (v * X) is integrable for all nonnegative p : ℝ.

    theorem ProbabilityTheory.integrable_pow_abs_mul_exp_of_mem_interior_integrableExpSet {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {v : } (hv : v interior (integrableExpSet X μ)) (n : ) :
    MeasureTheory.Integrable (fun (ω : Ω) => |X ω| ^ n * Real.exp (v * X ω)) μ

    If v belongs to the interior of the interval integrableExpSet X μ, then |X| ^ n * exp (v * X) is integrable for all n : ℕ.

    theorem ProbabilityTheory.integrable_rpow_mul_exp_of_mem_interior_integrableExpSet {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {v : } (hv : v interior (integrableExpSet X μ)) {p : } (hp : 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => X ω ^ p * Real.exp (v * X ω)) μ

    If v belongs to the interior of the interval integrableExpSet X μ, then X ^ p * exp (v * X) is integrable for all nonnegative p : ℝ.

    theorem ProbabilityTheory.integrable_pow_mul_exp_of_mem_interior_integrableExpSet {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} {v : } (hv : v interior (integrableExpSet X μ)) (n : ) :
    MeasureTheory.Integrable (fun (ω : Ω) => X ω ^ n * Real.exp (v * X ω)) μ

    If v belongs to the interior of the interval integrableExpSet X μ, then X ^ n * exp (v * X) is integrable for all n : ℕ.

    theorem ProbabilityTheory.integrable_rpow_abs_of_mem_interior_integrableExpSet {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} (h : 0 interior (integrableExpSet X μ)) {p : } (hp : 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => |X ω| ^ p) μ

    If 0 belongs to the interior of the interval integrableExpSet X μ, then |X| ^ n is integrable for all nonnegative p : ℝ.

    theorem ProbabilityTheory.integrable_pow_abs_of_mem_interior_integrableExpSet {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} (h : 0 interior (integrableExpSet X μ)) (n : ) :
    MeasureTheory.Integrable (fun (ω : Ω) => |X ω| ^ n) μ

    If 0 belongs to the interior of the interval integrableExpSet X μ, then |X| ^ n is integrable for all n : ℕ.

    theorem ProbabilityTheory.integrable_rpow_of_mem_interior_integrableExpSet {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} (h : 0 interior (integrableExpSet X μ)) {p : } (hp : 0 p) :
    MeasureTheory.Integrable (fun (ω : Ω) => X ω ^ p) μ

    If 0 belongs to the interior of the interval integrableExpSet X μ, then X ^ n is integrable for all nonnegative p : ℝ.

    theorem ProbabilityTheory.integrable_pow_of_mem_interior_integrableExpSet {Ω : Type u_1} {m : MeasurableSpace Ω} {X : Ω} {μ : MeasureTheory.Measure Ω} (h : 0 interior (integrableExpSet X μ)) (n : ) :
    MeasureTheory.Integrable (fun (ω : Ω) => X ω ^ n) μ

    If 0 belongs to the interior of the interval integrableExpSet X μ, then X ^ n is integrable for all n : ℕ.

    If 0 belongs to the interior of integrableExpSet X μ, then X is in ℒp for all finite p.