Documentation

Mathlib.RepresentationTheory.FDRep

FDRep k G is the category of finite dimensional k-linear representations of G. #

If V : FDRep k G, there is a coercion that allows you to treat V as a type, and this type comes equipped with Module k V and FiniteDimensional k V instances. Also V.ρ gives the homomorphism G →* (V →ₗ[k] V).

Conversely, given a homomorphism ρ : G →* (V →ₗ[k] V), you can construct the bundled representation as Rep.of ρ.

We prove Schur's Lemma: the dimension of the Hom-space between two irreducible representation is 0 if they are not isomorphic, and 1 if they are. This is the content of finrank_hom_simple_simple

We verify that FDRep k G is a k-linear monoidal category, and rigid when G is a group.

FDRep k G has all finite limits.

TODO #

@[reducible, inline]
noncomputable abbrev FDRep (k G : Type u) [Field k] [Monoid G] :
Type (u + 1)

The category of finite dimensional k-linear representations of a monoid G.

Equations
Instances For
    noncomputable instance FDRep.instLinear {k G : Type u} [Field k] [Monoid G] :
    Equations
    noncomputable instance FDRep.instCoeSortType {k G : Type u} [Field k] [Monoid G] :
    Equations
    noncomputable instance FDRep.instModuleCarrierVFGModuleCat {k G : Type u} [Field k] [Monoid G] (V : FDRep k G) :
    Module k V.V
    Equations
    instance FDRep.instFiniteDimensionalHom {k G : Type u} [Field k] [Monoid G] (V W : FDRep k G) :

    All hom spaces are finite dimensional.

    noncomputable def FDRep.ρ {k G : Type u} [Field k] [Monoid G] (V : FDRep k G) :
    G →* V.V →ₗ[k] V.V

    The monoid homomorphism corresponding to the action of G onto V : FDRep k G.

    Equations
    Instances For
      @[simp]
      @[simp]
      theorem FDRep.endRingEquiv_comp_ρ {k G : Type u} [Field k] [Monoid G] (V : FDRep k G) :
      @[simp]
      theorem FDRep.hom_action_ρ {k G : Type u} [Field k] [Monoid G] (V : FDRep k G) (g : G) :
      noncomputable def FDRep.isoToLinearEquiv {k G : Type u} [Field k] [Monoid G] {V W : FDRep k G} (i : V W) :
      V.V ≃ₗ[k] W.V

      The underlying LinearEquiv of an isomorphism of representations.

      Equations
      Instances For
        theorem FDRep.Iso.conj_ρ {k G : Type u} [Field k] [Monoid G] {V W : FDRep k G} (i : V W) (g : G) :
        W.ρ g = (isoToLinearEquiv i).conj (V.ρ g)
        @[reducible, inline]
        noncomputable abbrev FDRep.of {k G : Type u} [Field k] [Monoid G] {V : Type u} [AddCommGroup V] [Module k V] [FiniteDimensional k V] (ρ : Representation k G V) :
        FDRep k G

        Lift an unbundled representation to FDRep.

        Equations
        Instances For
          noncomputable instance FDRep.instHasForget₂Rep {k G : Type u} [Field k] [Monoid G] :
          Equations
          theorem FDRep.forget₂_ρ {k G : Type u} [Field k] [Monoid G] (V : FDRep k G) :

          Schur's Lemma: the dimension of the Hom-space between two irreducible representation is 0 if they are not isomorphic, and 1 if they are.

          noncomputable def FDRep.forget₂HomLinearEquiv {k G : Type u} [Field k] [Monoid G] (X Y : FDRep k G) :

          The forgetful functor to Rep k G preserves hom-sets and their vector space structure.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            noncomputable def FDRep.dualTensorIsoLinHomAux {k G V : Type u} [Field k] [Group G] [AddCommGroup V] [Module k V] [FiniteDimensional k V] (ρV : Representation k G V) (W : FDRep k G) :

            Auxiliary definition for FDRep.dualTensorIsoLinHom.

            Equations
            Instances For
              noncomputable def FDRep.dualTensorIsoLinHom {k G V : Type u} [Field k] [Group G] [AddCommGroup V] [Module k V] [FiniteDimensional k V] (ρV : Representation k G V) (W : FDRep k G) :

              When V and W are finite dimensional representations of a group G, the isomorphism dualTensorHomEquiv k V W of vector spaces induces an isomorphism of representations.

              Equations
              Instances For
                @[simp]