Documentation

Mathlib.RepresentationTheory.FDRep

FDRep k G is the category of finite dimensional k-linear representations of G. #

If V : FDRep k G, there is a coercion that allows you to treat V as a type, and this type comes equipped with Module k V and FiniteDimensional k V instances. Also V.ρ gives the homomorphism G →* (V →ₗ[k] V).

Conversely, given a homomorphism ρ : G →* (V →ₗ[k] V), you can construct the bundled representation as Rep.of ρ.

We prove Schur's Lemma: the dimension of the Hom-space between two irreducible representation is 0 if they are not isomorphic, and 1 if they are. This is the content of finrank_hom_simple_simple

We verify that FDRep k G is a k-linear monoidal category, and rigid when G is a group.

FDRep k G has all finite limits.

TODO #

@[reducible, inline]
noncomputable abbrev FDRep (k G : Type u) [Field k] [Monoid G] :
Type (u + 1)

The category of finite dimensional k-linear representations of a monoid G.

Equations
Instances For
    @[deprecated FDRep]
    def FdRep (k G : Type u) [Field k] [Monoid G] :
    Type (u + 1)

    Alias of FDRep.


    The category of finite dimensional k-linear representations of a monoid G.

    Equations
    Instances For
      noncomputable instance FDRep.instLargeCategory {k G : Type u} [Field k] [Monoid G] :
      Equations
      • FDRep.instLargeCategory = inferInstance
      noncomputable instance FDRep.instConcreteCategory {k G : Type u} [Field k] [Monoid G] :
      Equations
      • FDRep.instConcreteCategory = inferInstance
      noncomputable instance FDRep.instPreadditive {k G : Type u} [Field k] [Monoid G] :
      Equations
      • FDRep.instPreadditive = inferInstance
      Equations
      • =
      noncomputable instance FDRep.instLinear {k G : Type u} [Field k] [Monoid G] :
      Equations
      • FDRep.instLinear = inferInstance
      noncomputable instance FDRep.instCoeSortType {k G : Type u} [Field k] [Monoid G] :
      Equations
      noncomputable instance FDRep.instAddCommGroupCoe {k G : Type u} [Field k] [Monoid G] (V : FDRep k G) :
      Equations
      • V.instAddCommGroupCoe = inferInstance
      noncomputable instance FDRep.instModuleCoe {k G : Type u} [Field k] [Monoid G] (V : FDRep k G) :
      Equations
      • V.instModuleCoe = inferInstance
      noncomputable instance FDRep.instFiniteDimensionalCoe {k G : Type u} [Field k] [Monoid G] (V : FDRep k G) :
      Equations
      • =
      noncomputable instance FDRep.instFiniteDimensionalHom {k G : Type u} [Field k] [Monoid G] (V W : FDRep k G) :

      All hom spaces are finite dimensional.

      Equations
      • =
      noncomputable def FDRep.ρ {k G : Type u} [Field k] [Monoid G] (V : FDRep k G) :

      The monoid homomorphism corresponding to the action of G onto V : FDRep k G.

      Equations
      • V = V
      Instances For
        noncomputable def FDRep.isoToLinearEquiv {k G : Type u} [Field k] [Monoid G] {V W : FDRep k G} (i : V W) :

        The underlying LinearEquiv of an isomorphism of representations.

        Equations
        Instances For
          theorem FDRep.Iso.conj_ρ {k G : Type u} [Field k] [Monoid G] {V W : FDRep k G} (i : V W) (g : G) :
          W g = (FDRep.isoToLinearEquiv i).conj (V g)
          noncomputable def FDRep.of {k G : Type u} [Field k] [Monoid G] {V : Type u} [AddCommGroup V] [Module k V] [FiniteDimensional k V] (ρ : Representation k G V) :
          FDRep k G

          Lift an unbundled representation to FDRep.

          Equations
          Instances For
            @[simp]
            theorem FDRep.of_ρ {k G : Type u} [Field k] [Monoid G] {V : Type u} [AddCommGroup V] [Module k V] [FiniteDimensional k V] (ρ : Representation k G V) :
            (FDRep.of ρ) = ρ
            noncomputable instance FDRep.instHasForget₂Rep {k G : Type u} [Field k] [Monoid G] :
            Equations
            theorem FDRep.forget₂_ρ {k G : Type u} [Field k] [Monoid G] (V : FDRep k G) :
            ((CategoryTheory.forget₂ (FDRep k G) (Rep k G)).obj V) = V
            noncomputable instance FDRep.instHasKernels {k G : Type u} [Field k] [Monoid G] :
            Equations
            • =
            theorem FDRep.finrank_hom_simple_simple {k G : Type u} [Field k] [Monoid G] [IsAlgClosed k] (V W : FDRep k G) [CategoryTheory.Simple V] [CategoryTheory.Simple W] :
            Module.finrank k (V W) = if Nonempty (V W) then 1 else 0

            Schur's Lemma: the dimension of the Hom-space between two irreducible representation is 0 if they are not isomorphic, and 1 if they are.

            noncomputable def FDRep.forget₂HomLinearEquiv {k G : Type u} [Field k] [Monoid G] (X Y : FDRep k G) :
            ((CategoryTheory.forget₂ (FDRep k G) (Rep k G)).obj X (CategoryTheory.forget₂ (FDRep k G) (Rep k G)).obj Y) ≃ₗ[k] X Y

            The forgetful functor to Rep k G preserves hom-sets and their vector space structure.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              • FDRep.instRightRigidCategory = inferInstance
              noncomputable def FDRep.dualTensorIsoLinHomAux {k G V : Type u} [Field k] [Group G] [AddCommGroup V] [Module k V] [FiniteDimensional k V] (ρV : Representation k G V) (W : FDRep k G) :
              (CategoryTheory.MonoidalCategory.tensorObj (FDRep.of ρV.dual) W).V (FDRep.of (ρV.linHom W)).V

              Auxiliary definition for FDRep.dualTensorIsoLinHom.

              Equations
              Instances For
                noncomputable def FDRep.dualTensorIsoLinHom {k G V : Type u} [Field k] [Group G] [AddCommGroup V] [Module k V] [FiniteDimensional k V] (ρV : Representation k G V) (W : FDRep k G) :

                When V and W are finite dimensional representations of a group G, the isomorphism dualTensorHomEquiv k V W of vector spaces induces an isomorphism of representations.

                Equations
                Instances For
                  @[simp]
                  theorem FDRep.dualTensorIsoLinHom_hom_hom {k G V : Type u} [Field k] [Group G] [AddCommGroup V] [Module k V] [FiniteDimensional k V] (ρV : Representation k G V) (W : FDRep k G) :