Invariant submodules of a group representation #
def
Representation.invtSubmodule
{k : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommSemiring k]
[Monoid G]
[AddCommMonoid V]
[Module k V]
(ρ : Representation k G V)
:
Sublattice (Submodule k V)
Given a representation ρ
of a group, ρ.invtSubmodule
is the sublattice of all
ρ
-invariant submodules.
Equations
- ρ.invtSubmodule = ⨅ (g : G), Module.End.invtSubmodule (ρ g)
Instances For
theorem
Representation.mem_invtSubmodule
{k : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommSemiring k]
[Monoid G]
[AddCommMonoid V]
[Module k V]
(ρ : Representation k G V)
{p : Submodule k V}
:
@[simp]
theorem
Representation.invtSubmodule.top_mem
{k : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommSemiring k]
[Monoid G]
[AddCommMonoid V]
[Module k V]
(ρ : Representation k G V)
:
@[simp]
theorem
Representation.invtSubmodule.bot_mem
{k : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommSemiring k]
[Monoid G]
[AddCommMonoid V]
[Module k V]
(ρ : Representation k G V)
:
instance
Representation.invtSubmodule.instBoundedOrderSubtypeSubmoduleMemSublattice
{k : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommSemiring k]
[Monoid G]
[AddCommMonoid V]
[Module k V]
(ρ : Representation k G V)
:
@[simp]
theorem
Representation.invtSubmodule.coe_top
{k : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommSemiring k]
[Monoid G]
[AddCommMonoid V]
[Module k V]
(ρ : Representation k G V)
:
@[simp]
theorem
Representation.invtSubmodule.coe_bot
{k : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommSemiring k]
[Monoid G]
[AddCommMonoid V]
[Module k V]
(ρ : Representation k G V)
:
theorem
Representation.invtSubmodule.nontrivial_iff
{k : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommSemiring k]
[Monoid G]
[AddCommMonoid V]
[Module k V]
(ρ : Representation k G V)
:
instance
Representation.invtSubmodule.instNontrivialSubtypeSubmoduleMemSublattice
{k : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommSemiring k]
[Monoid G]
[AddCommMonoid V]
[Module k V]
(ρ : Representation k G V)
[Nontrivial V]
:
theorem
Representation.asAlgebraHom_mem_of_forall_mem
{k : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommSemiring k]
[Monoid G]
[AddCommMonoid V]
[Module k V]
(ρ : Representation k G V)
(p : Submodule k V)
(hp : ∀ (g : G), ∀ v ∈ p, (ρ g) v ∈ p)
(v : V)
(hv : v ∈ p)
(x : MonoidAlgebra k G)
:
def
Representation.mapSubmodule
{k : Type u_1}
{G : Type u_2}
{V : Type u_3}
[CommSemiring k]
[Monoid G]
[AddCommMonoid V]
[Module k V]
(ρ : Representation k G V)
:
The natural order isomorphism between the two ways to represent invariant submodules.
Equations
- One or more equations did not get rendered due to their size.