Documentation

Mathlib.RepresentationTheory.Submodule

Invariant submodules of a group representation #

def Representation.invtSubmodule {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] (ρ : Representation k G V) :

Given a representation ρ of a group, ρ.invtSubmodule is the sublattice of all ρ-invariant submodules.

Equations
Instances For
    theorem Representation.mem_invtSubmodule {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] (ρ : Representation k G V) {p : Submodule k V} :
    p ρ.invtSubmodule ∀ (g : G), p Module.End.invtSubmodule (ρ g)
    @[simp]
    theorem Representation.invtSubmodule.top_mem {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] (ρ : Representation k G V) :
    @[simp]
    theorem Representation.invtSubmodule.bot_mem {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] (ρ : Representation k G V) :
    @[simp]
    theorem Representation.invtSubmodule.coe_top {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] (ρ : Representation k G V) :
    =
    @[simp]
    theorem Representation.invtSubmodule.coe_bot {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] (ρ : Representation k G V) :
    =
    theorem Representation.asAlgebraHom_mem_of_forall_mem {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] (ρ : Representation k G V) (p : Submodule k V) (hp : ∀ (g : G), vp, (ρ g) v p) (v : V) (hv : v p) (x : MonoidAlgebra k G) :
    (ρ.asAlgebraHom x) v p
    def Representation.mapSubmodule {k : Type u_1} {G : Type u_2} {V : Type u_3} [CommSemiring k] [Monoid G] [AddCommMonoid V] [Module k V] (ρ : Representation k G V) :

    The natural order isomorphism between the two ways to represent invariant submodules.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For