Documentation

Mathlib.RingTheory.Coalgebra.Basic

Coalgebras #

In this file we define Coalgebra, and provide instances for:

References #

class CoalgebraStruct (R : Type u) (A : Type v) [CommSemiring R] [AddCommMonoid A] [Module R A] :
Type (max u v)

Data fields for Coalgebra, to allow API to be constructed before proving Coalgebra.coassoc.

See Coalgebra for documentation.

Instances
    class Coalgebra (R : Type u) (A : Type v) [CommSemiring R] [AddCommMonoid A] [Module R A] extends CoalgebraStruct :
    Type (max u v)

    A coalgebra over a commutative (semi)ring R is an R-module equipped with a coassociative comultiplication Δ and a counit ε obeying the left and right counitality laws.

    Instances
      theorem Coalgebra.coassoc {R : Type u} {A : Type v} [CommSemiring R] [AddCommMonoid A] [Module R A] [self : Coalgebra R A] :
      (TensorProduct.assoc R A A A) ∘ₗ LinearMap.rTensor A Coalgebra.comul ∘ₗ Coalgebra.comul = LinearMap.lTensor A Coalgebra.comul ∘ₗ Coalgebra.comul

      The comultiplication is coassociative

      theorem Coalgebra.rTensor_counit_comp_comul {R : Type u} {A : Type v} [CommSemiring R] [AddCommMonoid A] [Module R A] [self : Coalgebra R A] :
      LinearMap.rTensor A Coalgebra.counit ∘ₗ Coalgebra.comul = (TensorProduct.mk R R A) 1

      The counit satisfies the left counitality law

      theorem Coalgebra.lTensor_counit_comp_comul {R : Type u} {A : Type v} [CommSemiring R] [AddCommMonoid A] [Module R A] [self : Coalgebra R A] :
      LinearMap.lTensor A Coalgebra.counit ∘ₗ Coalgebra.comul = (TensorProduct.mk R A R).flip 1

      The counit satisfies the right counitality law

      @[simp]
      theorem Coalgebra.coassoc_apply {R : Type u} {A : Type v} [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (a : A) :
      (TensorProduct.assoc R A A A) ((LinearMap.rTensor A Coalgebra.comul) (Coalgebra.comul a)) = (LinearMap.lTensor A Coalgebra.comul) (Coalgebra.comul a)
      @[simp]
      theorem Coalgebra.coassoc_symm_apply {R : Type u} {A : Type v} [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (a : A) :
      (TensorProduct.assoc R A A A).symm ((LinearMap.lTensor A Coalgebra.comul) (Coalgebra.comul a)) = (LinearMap.rTensor A Coalgebra.comul) (Coalgebra.comul a)
      @[simp]
      theorem Coalgebra.coassoc_symm {R : Type u} {A : Type v} [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] :
      (TensorProduct.assoc R A A A).symm ∘ₗ LinearMap.lTensor A Coalgebra.comul ∘ₗ Coalgebra.comul = LinearMap.rTensor A Coalgebra.comul ∘ₗ Coalgebra.comul
      @[simp]
      theorem Coalgebra.rTensor_counit_comul {R : Type u} {A : Type v} [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (a : A) :
      (LinearMap.rTensor A Coalgebra.counit) (Coalgebra.comul a) = 1 ⊗ₜ[R] a
      @[simp]
      theorem Coalgebra.lTensor_counit_comul {R : Type u} {A : Type v} [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (a : A) :
      (LinearMap.lTensor A Coalgebra.counit) (Coalgebra.comul a) = a ⊗ₜ[R] 1
      noncomputable instance CommSemiring.toCoalgebra (R : Type u) [CommSemiring R] :

      Every commutative (semi)ring is a coalgebra over itself, with Δ r = 1 ⊗ₜ r.

      Equations
      @[simp]
      theorem CommSemiring.comul_apply (R : Type u) [CommSemiring R] (r : R) :
      Coalgebra.comul r = 1 ⊗ₜ[R] r
      @[simp]
      theorem CommSemiring.counit_apply (R : Type u) [CommSemiring R] (r : R) :
      Coalgebra.counit r = r
      noncomputable instance Prod.instCoalgebraStruct (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] :
      Equations
      • One or more equations did not get rendered due to their size.
      @[simp]
      theorem Prod.comul_apply (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] (r : A × B) :
      Coalgebra.comul r = (TensorProduct.map (LinearMap.inl R A B) (LinearMap.inl R A B)) (Coalgebra.comul r.1) + (TensorProduct.map (LinearMap.inr R A B) (LinearMap.inr R A B)) (Coalgebra.comul r.2)
      @[simp]
      theorem Prod.counit_apply (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] (r : A × B) :
      Coalgebra.counit r = Coalgebra.counit r.1 + Coalgebra.counit r.2
      theorem Prod.comul_comp_inl (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] :
      Coalgebra.comul ∘ₗ LinearMap.inl R A B = TensorProduct.map (LinearMap.inl R A B) (LinearMap.inl R A B) ∘ₗ Coalgebra.comul
      theorem Prod.comul_comp_inr (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] :
      Coalgebra.comul ∘ₗ LinearMap.inr R A B = TensorProduct.map (LinearMap.inr R A B) (LinearMap.inr R A B) ∘ₗ Coalgebra.comul
      theorem Prod.comul_comp_fst (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] :
      Coalgebra.comul ∘ₗ LinearMap.fst R A B = TensorProduct.map (LinearMap.fst R A B) (LinearMap.fst R A B) ∘ₗ Coalgebra.comul
      theorem Prod.comul_comp_snd (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] :
      Coalgebra.comul ∘ₗ LinearMap.snd R A B = TensorProduct.map (LinearMap.snd R A B) (LinearMap.snd R A B) ∘ₗ Coalgebra.comul
      @[simp]
      theorem Prod.counit_comp_inr (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] :
      Coalgebra.counit ∘ₗ LinearMap.inr R A B = Coalgebra.counit
      @[simp]
      theorem Prod.counit_comp_inl (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] :
      Coalgebra.counit ∘ₗ LinearMap.inl R A B = Coalgebra.counit
      noncomputable instance Prod.instCoalgebra (R : Type u) (A : Type v) (B : Type w) [CommSemiring R] [AddCommMonoid A] [AddCommMonoid B] [Module R A] [Module R B] [Coalgebra R A] [Coalgebra R B] :
      Coalgebra R (A × B)
      Equations
      noncomputable instance Finsupp.instCoalgebraStruct (R : Type u) (ι : Type v) (A : Type w) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] :
      Equations
      • One or more equations did not get rendered due to their size.
      @[simp]
      theorem Finsupp.comul_single (R : Type u) (ι : Type v) (A : Type w) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (i : ι) (a : A) :
      Coalgebra.comul (Finsupp.single i a) = (TensorProduct.map (Finsupp.lsingle i) (Finsupp.lsingle i)) (Coalgebra.comul a)
      @[simp]
      theorem Finsupp.counit_single (R : Type u) (ι : Type v) (A : Type w) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (i : ι) (a : A) :
      Coalgebra.counit (Finsupp.single i a) = Coalgebra.counit a
      theorem Finsupp.comul_comp_lsingle (R : Type u) (ι : Type v) (A : Type w) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (i : ι) :
      Coalgebra.comul ∘ₗ Finsupp.lsingle i = TensorProduct.map (Finsupp.lsingle i) (Finsupp.lsingle i) ∘ₗ Coalgebra.comul
      theorem Finsupp.comul_comp_lapply (R : Type u) (ι : Type v) (A : Type w) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (i : ι) :
      Coalgebra.comul ∘ₗ Finsupp.lapply i = TensorProduct.map (Finsupp.lapply i) (Finsupp.lapply i) ∘ₗ Coalgebra.comul
      @[simp]
      theorem Finsupp.counit_comp_lsingle (R : Type u) (ι : Type v) (A : Type w) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] (i : ι) :
      Coalgebra.counit ∘ₗ Finsupp.lsingle i = Coalgebra.counit
      noncomputable instance Finsupp.instCoalgebra (R : Type u) (ι : Type v) (A : Type w) [CommSemiring R] [AddCommMonoid A] [Module R A] [Coalgebra R A] :
      Coalgebra R (ι →₀ A)

      The R-module whose elements are functions ι → A which are zero on all but finitely many elements of ι has a coalgebra structure. The coproduct Δ is given by Δ(fᵢ a) = fᵢ a₁ ⊗ fᵢ a₂ where Δ(a) = a₁ ⊗ a₂ and the counit ε by ε(fᵢ a) = ε(a), where fᵢ a is the function sending i to a and all other elements of ι to zero.

      Equations