Documentation

Mathlib.RingTheory.Coalgebra.MonoidAlgebra

The coalgebra structure on monoid algebras #

Given a type X, a commutative semiring R and a semiring A which is also an R-coalgebra, this file collects results about the R-coalgebra instance on A[X] inherited from the corresponding structure on its coefficients, defined in Mathlib/RingTheory/Coalgebra/Basic.lean.

Main definitions #

noncomputable instance MonoidAlgebra.instCoalgebra (R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] (X : Type u_3) [Module R A] [Coalgebra R A] :
Equations
@[simp]
theorem MonoidAlgebra.counit_single {R : Type u_1} [CommSemiring R] {A : Type u_2} [Semiring A] {X : Type u_3} [Module R A] [Coalgebra R A] (x : X) (a : A) :
@[simp]
theorem MonoidAlgebra.comul_single {R : Type u_1} [CommSemiring R] {A : Type u_2} [Semiring A] {X : Type u_3} [Module R A] [Coalgebra R A] (x : X) (a : A) :
noncomputable instance AddMonoidAlgebra.instCoalgebra (R : Type u_1) [CommSemiring R] (A : Type u_2) [Semiring A] (X : Type u_3) [Module R A] [Coalgebra R A] :
Equations
@[simp]
theorem AddMonoidAlgebra.counit_single {R : Type u_1} [CommSemiring R] {A : Type u_2} [Semiring A] {X : Type u_3} [Module R A] [Coalgebra R A] (x : X) (a : A) :
@[simp]
theorem AddMonoidAlgebra.comul_single {R : Type u_1} [CommSemiring R] {A : Type u_2} [Semiring A] {X : Type u_3} [Module R A] [Coalgebra R A] (x : X) (a : A) :
@[simp]
@[simp]
theorem LaurentPolynomial.counit_C_mul_T {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [Module R A] [Coalgebra R A] (a : A) (n : ) :