Lemmas about Euclidean domains #
Various about Euclidean domains are proved; all of them seem to be true more generally for principal ideal domains, so these lemmas should probably be reproved in more generality and this file perhaps removed?
Tags #
euclidean domain
theorem
gcd_ne_zero_of_left
{R : Type u_1}
[EuclideanDomain R]
[GCDMonoid R]
{p q : R}
(hp : p ≠ 0)
:
theorem
gcd_ne_zero_of_right
{R : Type u_1}
[EuclideanDomain R]
[GCDMonoid R]
{p q : R}
(hp : q ≠ 0)
:
theorem
left_div_gcd_ne_zero
{R : Type u_1}
[EuclideanDomain R]
[GCDMonoid R]
{p q : R}
(hp : p ≠ 0)
:
theorem
right_div_gcd_ne_zero
{R : Type u_1}
[EuclideanDomain R]
[GCDMonoid R]
{p q : R}
(hq : q ≠ 0)
:
Create a GCDMonoid
whose GCDMonoid.gcd
matches EuclideanDomain.gcd
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
EuclideanDomain.span_gcd
{α : Type u_1}
[EuclideanDomain α]
[DecidableEq α]
(x y : α)
:
Ideal.span {EuclideanDomain.gcd x y} = Ideal.span {x, y}
theorem
EuclideanDomain.gcd_isUnit_iff
{α : Type u_1}
[EuclideanDomain α]
[DecidableEq α]
{x y : α}
:
IsUnit (EuclideanDomain.gcd x y) ↔ IsCoprime x y
theorem
EuclideanDomain.dvd_or_coprime
{α : Type u_1}
[EuclideanDomain α]
(x y : α)
(h : Irreducible x)
: