Co-finitely generated submodules #
This files defines the notion of a co-finitely generated submodule. A submodule S of a module
M is co-finitely generated (or CoFG for short) if the quotient of M by S is finitely
generated (i.e. FG).
Main declarations #
Submodule.CoFGexpresses that a submodule is co-finitely generated.
@[reducible, inline]
abbrev
Submodule.CoFG
{R : Type u_1}
[Ring R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
(S : Submodule R M)
:
A submodule S of a module M is co-finitely generated (CoFG) if the quotient
space M ⧸ S is finitely generated.
Equations
- S.CoFG = Module.Finite R (M ⧸ S)
Instances For
@[simp]
theorem
Submodule.CoFG.of_finite
{R : Type u_1}
[Ring R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[Module.Finite R M]
{S : Submodule R M}
:
S.CoFG
A submodule of a finite module is CoFG.
@[simp]
The top submodule is CoFG.
theorem
Module.Finite.iff_cofg_bot
(R : Type u_1)
[Ring R]
(M : Type u_2)
[AddCommGroup M]
[Module R M]
:
A module is finite if and only if the bottom submodule is CoFG.
theorem
Submodule.CoFG.ker
{R : Type u_1}
[Ring R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
{N : Type u_3}
[AddCommGroup N]
[Module R N]
[IsNoetherian R N]
(f : M →ₗ[R] N)
:
The kernel of a linear map into a noetherian module is CoFG.
theorem
Submodule.CoFG.inf
{R : Type u_1}
[Ring R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[IsNoetherianRing R]
{S T : Submodule R M}
(hS : S.CoFG)
(hT : T.CoFG)
:
(S ⊓ T).CoFG
Over a noetherian ring the intersection of two CoFG submodules is CoFG.
theorem
Submodule.CoFG.sInf
{R : Type u_1}
[Ring R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[IsNoetherianRing R]
{s : Finset (Submodule R M)}
(hs : ∀ S ∈ s, S.CoFG)
:
Over a noetherian ring the infimum of a finite family of CoFG submodules is CoFG.
theorem
Submodule.CoFG.sInf_of_finite
{R : Type u_1}
[Ring R]
{M : Type u_2}
[AddCommGroup M]
[Module R M]
[IsNoetherianRing R]
{s : Set (Submodule R M)}
(hs : s.Finite)
(hcofg : ∀ S ∈ s, S.CoFG)
:
Over a noetherian ring the infimum of a finite family of CoFG submodules is CoFG.