Documentation

Mathlib.RingTheory.Flat.Equalizer

Base change along flat modules preserves equalizers #

We show that base change along flat modules (resp. algebras) preserves kernels and equalizers.

The bilinear map corresponding to LinearMap.tensorEqLocus.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def LinearMap.tensorKerBil {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (M : Type u_3) [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] {N : Type u_4} {P : Type u_5} [AddCommGroup N] [AddCommGroup P] [Module R N] [Module R P] (f : N →ₗ[R] P) :

    The bilinear map corresponding to LinearMap.tensorKer.

    Equations
    Instances For

      The canonical map M ⊗[R] eq(f, g) →ₗ[R] eq(𝟙 ⊗ f, 𝟙 ⊗ g).

      Equations
      Instances For
        def LinearMap.tensorKer {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (M : Type u_3) [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] {N : Type u_4} {P : Type u_5} [AddCommGroup N] [AddCommGroup P] [Module R N] [Module R P] (f : N →ₗ[R] P) :

        The canonical map M ⊗[R] ker f →ₗ[R] ker (𝟙 ⊗ f).

        Equations
        Instances For
          @[simp]
          theorem LinearMap.tensorKer_tmul {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (M : Type u_3) [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] {N : Type u_4} {P : Type u_5} [AddCommGroup N] [AddCommGroup P] [Module R N] [Module R P] (f : N →ₗ[R] P) (m : M) (x : (LinearMap.ker f)) :
          ((LinearMap.tensorKer S M f) (m ⊗ₜ[R] x)) = m ⊗ₜ[R] x
          @[simp]
          theorem LinearMap.tensorKer_coe {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (M : Type u_3) [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] {N : Type u_4} {P : Type u_5} [AddCommGroup N] [AddCommGroup P] [Module R N] [Module R P] (f : N →ₗ[R] P) (x : TensorProduct R M (LinearMap.ker f)) :
          ((LinearMap.tensorKer S M f) x) = (LinearMap.lTensor M (LinearMap.ker f).subtype) x
          @[simp]
          theorem LinearMap.tensorEqLocus_tmul {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (M : Type u_3) [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] {N : Type u_4} {P : Type u_5} [AddCommGroup N] [AddCommGroup P] [Module R N] [Module R P] (f g : N →ₗ[R] P) (m : M) (x : (LinearMap.eqLocus f g)) :
          ((LinearMap.tensorEqLocus S M f g) (m ⊗ₜ[R] x)) = m ⊗ₜ[R] x
          @[simp]
          theorem LinearMap.tensorEqLocus_coe {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (M : Type u_3) [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] {N : Type u_4} {P : Type u_5} [AddCommGroup N] [AddCommGroup P] [Module R N] [Module R P] (f g : N →ₗ[R] P) (x : TensorProduct R M (LinearMap.eqLocus f g)) :
          ((LinearMap.tensorEqLocus S M f g) x) = (LinearMap.lTensor M (LinearMap.eqLocus f g).subtype) x
          def LinearMap.tensorKerEquiv {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (M : Type u_3) [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] {N : Type u_4} {P : Type u_5} [AddCommGroup N] [AddCommGroup P] [Module R N] [Module R P] (f : N →ₗ[R] P) [Module.Flat R M] :

          If M is R-flat, the canonical map M ⊗[R] ker f →ₗ[R] ker (𝟙 ⊗ f) is an isomorphism.

          Equations
          Instances For
            @[simp]
            theorem LinearMap.tensorKerEquiv_apply {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (M : Type u_3) [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] {N : Type u_4} {P : Type u_5} [AddCommGroup N] [AddCommGroup P] [Module R N] [Module R P] (f : N →ₗ[R] P) [Module.Flat R M] (x : TensorProduct R M (LinearMap.ker f)) :
            @[simp]
            theorem LinearMap.lTensor_ker_subtype_tensorKerEquiv_symm {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (M : Type u_3) [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] {N : Type u_4} {P : Type u_5} [AddCommGroup N] [AddCommGroup P] [Module R N] [Module R P] (f : N →ₗ[R] P) [Module.Flat R M] (x : (LinearMap.ker ((TensorProduct.AlgebraTensorModule.lTensor S M) f))) :
            (LinearMap.lTensor M (LinearMap.ker f).subtype) ((LinearMap.tensorKerEquiv S M f).symm x) = x

            If M is R-flat, the canonical map M ⊗[R] eq(f, g) →ₗ[S] eq (𝟙 ⊗ f, 𝟙 ⊗ g) is an isomorphism.

            Equations
            Instances For
              @[simp]
              theorem LinearMap.tensorEqLocusEquiv_apply {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (M : Type u_3) [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] {N : Type u_4} {P : Type u_5} [AddCommGroup N] [AddCommGroup P] [Module R N] [Module R P] (f g : N →ₗ[R] P) [Module.Flat R M] (x : TensorProduct R M (LinearMap.eqLocus f g)) :
              @[simp]
              def AlgHom.tensorEqualizer {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (T : Type u_3) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] {A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f g : A →ₐ[R] B) :

              The canonical map T ⊗[R] eq(f, g) →ₐ[S] eq (𝟙 ⊗ f, 𝟙 ⊗ g).

              Equations
              Instances For
                @[simp]
                theorem AlgHom.coe_tensorEqualizer {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (T : Type u_3) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] {A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f g : A →ₐ[R] B) (x : TensorProduct R T (AlgHom.equalizer f g)) :
                def AlgHom.tensorEqualizerEquiv {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (T : Type u_3) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] {A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f g : A →ₐ[R] B) [Module.Flat R T] :

                If T is R-flat, the canonical map T ⊗[R] eq(f, g) →ₐ[S] eq (𝟙 ⊗ f, 𝟙 ⊗ g) is an isomorphism.

                Equations
                Instances For
                  @[simp]
                  theorem AlgHom.tensorEqualizerEquiv_apply {R : Type u_1} (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (T : Type u_3) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] {A : Type u_4} {B : Type u_5} [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f g : A →ₐ[R] B) [Module.Flat R T] (x : TensorProduct R T (AlgHom.equalizer f g)) :