Documentation

Mathlib.RingTheory.FractionalIdeal.Extended

Extension of fractional ideals #

This file defines the extension of a fractional ideal along a ring homomorphism.

Main definition #

Main results #

Tags #

fractional ideal, fractional ideals, extended, extension

def FractionalIdeal.extended {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) (I : FractionalIdeal M K) :

Given commutative rings A and B with respective localizations IsLocalization M K and IsLocalization N L, and a ring homomorphism f : A →+* B satisfying M ≤ Submonoid.comap f N, a fractional ideal I of A can be extended along f to a fractional ideal of B.

Equations
Instances For
    theorem FractionalIdeal.mem_extended_iff {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) (I : FractionalIdeal M K) (x : L) :
    x extended L hf I x Submodule.span B ((IsLocalization.map L f hf) '' I)
    @[simp]
    theorem FractionalIdeal.coe_extended_eq_span {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) (I : FractionalIdeal M K) :
    (extended L hf I) = Submodule.span B ((IsLocalization.map L f hf) '' I)
    @[simp]
    theorem FractionalIdeal.extended_zero {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) :
    extended L hf 0 = 0
    @[simp]
    theorem FractionalIdeal.extended_one {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) :
    extended L hf 1 = 1
    theorem FractionalIdeal.extended_add {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) (I J : FractionalIdeal M K) :
    extended L hf (I + J) = extended L hf I + extended L hf J
    theorem FractionalIdeal.extended_mul {A : Type u_1} [CommRing A] {B : Type u_2} [CommRing B] {f : A →+* B} {K : Type u_3} {M : Submonoid A} [CommRing K] [Algebra A K] [IsLocalization M K] (L : Type u_4) {N : Submonoid B} [CommRing L] [Algebra B L] [IsLocalization N L] (hf : M Submonoid.comap f N) (I J : FractionalIdeal M K) :
    extended L hf (I * J) = extended L hf I * extended L hf J