Extension of fractional ideals #
This file defines the extension of a fractional ideal along a ring homomorphism.
Main definition #
FractionalIdeal.extended
: LetA
andB
be commutative rings with respective localizationsIsLocalization M K
andIsLocalization N L
. Letf : A →+* B
be a ring homomorphism withhf : M ≤ Submonoid.comap f N
. IfI : FractionalIdeal M K
, then the extension ofI
alongf
isextended L hf I : FractionalIdeal N L
.
Main results #
extended_add
says that extension commutes with addition.extended_mul
says that extension commutes with multiplication.
Tags #
fractional ideal, fractional ideals, extended, extension
def
FractionalIdeal.extended
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
(I : FractionalIdeal M K)
:
FractionalIdeal N L
Given commutative rings A
and B
with respective localizations IsLocalization M K
and
IsLocalization N L
, and a ring homomorphism f : A →+* B
satisfying M ≤ Submonoid.comap f N
, a
fractional ideal I
of A
can be extended along f
to a fractional ideal of B
.
Equations
- FractionalIdeal.extended L hf I = ⟨Submodule.span B (⇑(IsLocalization.map L f hf) '' ↑I), ⋯⟩
Instances For
theorem
FractionalIdeal.mem_extended_iff
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
(I : FractionalIdeal M K)
(x : L)
:
x ∈ extended L hf I ↔ x ∈ Submodule.span B (⇑(IsLocalization.map L f hf) '' ↑I)
@[simp]
theorem
FractionalIdeal.coe_extended_eq_span
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
(I : FractionalIdeal M K)
:
↑(extended L hf I) = Submodule.span B (⇑(IsLocalization.map L f hf) '' ↑I)
@[simp]
theorem
FractionalIdeal.extended_zero
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
:
@[simp]
theorem
FractionalIdeal.extended_one
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
:
theorem
FractionalIdeal.extended_add
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
(I J : FractionalIdeal M K)
:
theorem
FractionalIdeal.extended_mul
{A : Type u_1}
[CommRing A]
{B : Type u_2}
[CommRing B]
{f : A →+* B}
{K : Type u_3}
{M : Submonoid A}
[CommRing K]
[Algebra A K]
[IsLocalization M K]
(L : Type u_4)
{N : Submonoid B}
[CommRing L]
[Algebra B L]
[IsLocalization N L]
(hf : M ≤ Submonoid.comap f N)
(I J : FractionalIdeal M K)
: