Documentation

Mathlib.RingTheory.HahnSeries.Lex

Lexicographical order on Hahn series #

In this file, we define lexicographical ordered Lex R⟦Γ⟧, and show this is a LinearOrder when Γ and R themselves are linearly ordered. Additionally, it is an ordered group when R is.

Main definitions #

theorem HahnSeries.lt_iff {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [Zero R] [PartialOrder R] (a b : Lex (HahnSeries Γ R)) :
a < b ∃ (i : Γ), (∀ j < i, (ofLex a).coeff j = (ofLex b).coeff j) (ofLex a).coeff i < (ofLex b).coeff i
noncomputable instance HahnSeries.instLinearOrderLex {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [Zero R] [LinearOrder R] :
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem HahnSeries.leadingCoeff_pos_iff {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [Zero R] [LinearOrder R] {x : Lex (HahnSeries Γ R)} :
theorem HahnSeries.leadingCoeff_nonneg_iff {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [Zero R] [LinearOrder R] {x : Lex (HahnSeries Γ R)} :
theorem HahnSeries.leadingCoeff_neg_iff {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [Zero R] [LinearOrder R] {x : Lex (HahnSeries Γ R)} :
theorem HahnSeries.leadingCoeff_nonpos_iff {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [Zero R] [LinearOrder R] {x : Lex (HahnSeries Γ R)} :
@[simp]
@[simp]
theorem HahnSeries.order_abs {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [LinearOrder R] [AddCommGroup R] [IsOrderedAddMonoid R] [Zero Γ] (x : Lex (HahnSeries Γ R)) :

Finite archimedean classes of Lex R⟦Γ⟧ decompose into lexicographical pairs of order and the finite archimedean class of leadingCoeff.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The inverse of finiteArchimedeanClassOrderHomLex.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The correspondence between finite archimedean classes of Lex R⟦Γ⟧ and lexicographical pairs of HahnSeries.orderTop and the finite archimedean class of HahnSeries.leadingCoeff.

      Equations
      Instances For

        For Archimedean coefficients, there is a correspondence between finite archimedean classes and HahnSeries.orderTop without the top element.

        Equations
        Instances For
          noncomputable def HahnSeries.embDomainOrderEmbedding {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [PartialOrder R] {Γ' : Type u_3} [LinearOrder Γ'] (f : Γ ↪o Γ') [Zero R] :

          HahnSeries.embDomain as an OrderEmbedding.

          Equations
          Instances For
            @[simp]
            theorem HahnSeries.embDomainOrderEmbedding_apply {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [PartialOrder R] {Γ' : Type u_3} [LinearOrder Γ'] (f : Γ ↪o Γ') [Zero R] (a : Lex (HahnSeries Γ R)) :
            noncomputable def HahnSeries.embDomainOrderAddMonoidHom {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [PartialOrder R] {Γ' : Type u_3} [LinearOrder Γ'] (f : Γ ↪o Γ') [AddMonoid R] :

            HahnSeries.embDomain as an OrderAddMonoidHom.

            Equations
            Instances For
              @[simp]
              theorem HahnSeries.embDomainOrderAddMonoidHom_apply {Γ : Type u_1} {R : Type u_2} [LinearOrder Γ] [PartialOrder R] {Γ' : Type u_3} [LinearOrder Γ'] (f : Γ ↪o Γ') [AddMonoid R] (a✝ : Lex (HahnSeries Γ R)) :