Lexicographical order on Hahn series #
In this file, we define lexicographical ordered Lex (HahnSeries Γ R)
, and show this
is a LinearOrder
when Γ
and R
themselves are linearly ordered. Additionally,
it is an ordered group when R
is.
instance
HahnSeries.instPartialOrderLex
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[Zero R]
[PartialOrder R]
:
PartialOrder (Lex (HahnSeries Γ R))
Equations
- HahnSeries.instPartialOrderLex = PartialOrder.lift (fun (x : Lex (HahnSeries Γ R)) => toLex (ofLex x).coeff) ⋯
noncomputable instance
HahnSeries.instLinearOrderLex
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[Zero R]
[LinearOrder R]
:
LinearOrder (Lex (HahnSeries Γ R))
Equations
- One or more equations did not get rendered due to their size.
theorem
HahnSeries.leadingCoeff_pos_iff
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[Zero R]
[LinearOrder R]
{x : Lex (HahnSeries Γ R)}
:
theorem
HahnSeries.leadingCoeff_nonneg_iff
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[Zero R]
[LinearOrder R]
{x : Lex (HahnSeries Γ R)}
:
theorem
HahnSeries.leadingCoeff_neg_iff
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[Zero R]
[LinearOrder R]
{x : Lex (HahnSeries Γ R)}
:
theorem
HahnSeries.leadingCoeff_nonpos_iff
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[Zero R]
[LinearOrder R]
{x : Lex (HahnSeries Γ R)}
:
instance
HahnSeries.instIsOrderedAddMonoidLex
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[PartialOrder R]
[AddCommMonoid R]
[AddLeftStrictMono R]
:
IsOrderedAddMonoid (Lex (HahnSeries Γ R))
theorem
HahnSeries.support_abs
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[LinearOrder R]
[AddCommGroup R]
[IsOrderedAddMonoid R]
(x : Lex (HahnSeries Γ R))
:
theorem
HahnSeries.orderTop_abs
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[LinearOrder R]
[AddCommGroup R]
[IsOrderedAddMonoid R]
(x : Lex (HahnSeries Γ R))
:
theorem
HahnSeries.order_abs
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[LinearOrder R]
[AddCommGroup R]
[IsOrderedAddMonoid R]
[Zero Γ]
(x : Lex (HahnSeries Γ R))
:
theorem
HahnSeries.leadingCoeff_abs
{Γ : Type u_1}
{R : Type u_2}
[LinearOrder Γ]
[LinearOrder R]
[AddCommGroup R]
[IsOrderedAddMonoid R]
(x : Lex (HahnSeries Γ R))
: