Documentation

Mathlib.RingTheory.HopfAlgebra.GroupLike

Group-like elements in a Hopf algebra #

This file proves that group-like elements in a Hopf algebra form a group.

@[simp]
theorem IsGroupLikeElem.antipode_mul_cancel {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {a : A} (ha : IsGroupLikeElem R a) :
@[simp]
theorem IsGroupLikeElem.mul_antipode_cancel {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {a : A} (ha : IsGroupLikeElem R a) :
def GroupLike.toUnits (R : Type u_1) {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] :

Turn a group-like element a into a unit with inverse its antipode.

Equations
Instances For
    @[simp]
    theorem GroupLike.val_inv_toUnits_apply (R : Type u_1) {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] (a : GroupLike R A) :
    @[simp]
    theorem GroupLike.val_toUnits_apply (R : Type u_1) {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] (a : GroupLike R A) :
    ((toUnits R) a) = a
    theorem IsGroupLikeElem.isUnit {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {a : A} (ha : IsGroupLikeElem R a) :
    @[simp]
    theorem IsGroupLikeElem.antipode {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] {a : A} (ha : IsGroupLikeElem R a) :
    instance GroupLike.instInv {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] :
    Equations
    @[simp]
    theorem GroupLike.val_inv {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] (a : GroupLike R A) :
    instance GroupLike.instGroup {R : Type u_1} {A : Type u_2} [CommSemiring R] [Semiring A] [HopfAlgebra R A] :
    Equations
    • One or more equations did not get rendered due to their size.
    instance GroupLike.instCommGroup {R : Type u_1} {A : Type u_2} [CommSemiring R] [CommSemiring A] [HopfAlgebra R A] :
    Equations
    • One or more equations did not get rendered due to their size.