Primary ideals #
A proper ideal I is primary iff xy ∈ I implies x ∈ I or y ∈ radical I.
Main definitions #
Implementation details #
Uses a specialized phrasing of Submodule.IsPrimary to have better API-piercing usage.
@[reducible, inline]
A proper ideal I is primary as a submodule.
Equations
Instances For
theorem
Ideal.isPrimary_of_isMaximal_radical
{R : Type u_1}
[CommSemiring R]
{I : Ideal R}
(hi : I.radical.IsMaximal)
:
@[deprecated Ideal.IsPrimary.inf (since := "2025-01-19")]
theorem
Ideal.isPrimary_inf
{R : Type u_1}
[CommSemiring R]
{I J : Ideal R}
(hi : I.IsPrimary)
(hj : J.IsPrimary)
(hij : I.radical = J.radical)
:
(I ⊓ J).IsPrimary
Alias of Ideal.IsPrimary.inf.
@[deprecated Ideal.isPrimary_finsetInf (since := "2026-01-19")]
theorem
Ideal.isPrimary_finset_inf
{R : Type u_1}
[CommSemiring R]
{ι : Type u_3}
{s : Finset ι}
{f : ι → Ideal R}
{i : ι}
(hi : i ∈ s)
(hs : ∀ ⦃y : ι⦄, y ∈ s → (f y).IsPrimary)
(hs' : ∀ ⦃y : ι⦄, y ∈ s → (f y).radical = (f i).radical)
:
Alias of Ideal.isPrimary_finsetInf.
theorem
Ideal.IsPrimary.comap
{R : Type u_1}
{S : Type u_2}
[CommSemiring R]
[CommSemiring S]
{I : Ideal S}
(hI : I.IsPrimary)
(φ : R →+* S)
:
(Ideal.comap φ I).IsPrimary