Documentation

Mathlib.RingTheory.IntegralClosure.Algebra.Ideal

Integrality over ideals #

Main results #

Note #

We actually prove something stronger, namely that the Xⁿ⁻ⁱ-th coefficient lives in Iⁿ. This the definitition that x is integral over I in https://stacks.math.columbia.edu/tag/00H2.

theorem Polynomial.coeff_mem_pow_of_mem_adjoin_C_mul_X {R : Type u_3} [CommRing R] {I : Ideal R} {P : Polynomial R} (hP : P Algebra.adjoin R {x : Polynomial R | rI, C r * X = x}) (i : ) :
P.coeff i I ^ i
theorem Polynomial.exists_monic_aeval_eq_zero_forall_mem_pow_of_isIntegral {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] {I : Ideal R} {x : S} (hx : IsIntegral (↥(Algebra.adjoin R {x : Polynomial R | rI, C r * X = x})) (C x * X)) :
∃ (p : Polynomial R), p.Monic (aeval x) p = 0 ∀ (i : ), p.coeff i I ^ (p.natDegree - i)
theorem Polynomial.exists_monic_aeval_eq_zero_forall_mem_pow_of_mem_map {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [Algebra.IsIntegral R S] {I : Ideal R} {x : S} (hx : x Ideal.map (algebraMap R S) I) :
∃ (p : Polynomial R), p.Monic (aeval x) p = 0 ∀ (i : ), p.coeff i I ^ (p.natDegree - i)
theorem Polynomial.exists_monic_aeval_eq_zero_forall_mem_of_mem_map {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [Algebra.IsIntegral R S] {I : Ideal R} {x : S} (hx : x Ideal.map (algebraMap R S) I) :
∃ (p : Polynomial R), p.Monic (aeval x) p = 0 ∀ (i : ), i p.natDegreep.coeff i I

Stacks Tag 00H5