Integrality over ideals #
Main results #
Polynomial.exists_monic_aeval_eq_zero_forall_mem_of_mem_map: IfSis an integralR-algebra, andIis an ideal ofR, then anyx ∈ ISis integral overI, i.e. it is a root of some monic polynomial inR[X]whose non-leading coefficients are inI.
Note #
We actually prove something stronger, namely that the Xⁿ⁻ⁱ-th coefficient lives in Iⁿ.
This the definitition that x is integral over I in https://stacks.math.columbia.edu/tag/00H2.
theorem
Polynomial.exists_monic_aeval_eq_zero_forall_mem_pow_of_mem_map
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[Algebra.IsIntegral R S]
{I : Ideal R}
{x : S}
(hx : x ∈ Ideal.map (algebraMap R S) I)
:
theorem
Polynomial.exists_monic_aeval_eq_zero_forall_mem_of_mem_map
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[Algebra.IsIntegral R S]
{I : Ideal R}
{x : S}
(hx : x ∈ Ideal.map (algebraMap R S) I)
: