Documentation

Mathlib.RingTheory.Jacobson.Semiprimary

Semiprimary rings #

Main definition #

theorem IsSemisimpleModule.jacobson_le_ker (R : Type u_1) (R₂ : Type u_2) (M : Type u_3) (M₂ : Type u_4) [Ring R] [Ring R₂] [AddCommGroup M] [Module R M] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {F : Type u_5} [FunLike F M M₂] [SemilinearMapClass F τ₁₂ M M₂] (f : F) [IsSemisimpleModule R₂ M₂] :

The Jacobson radical of a ring annihilates every semisimple module.

class IsSemiprimaryRing (R : Type u_1) [Ring R] :

A ring is semiprimary if its Jacobson radical is nilpotent and its quotient by the Jacobson radical is semisimple.

Instances