Semiprimary rings #
Main definition #
IsSemiprimaryRing R
: a ringR
is semiprimary ifRing.jacobson R
is nilpotent andR ⧸ Ring.jacobson R
is semisimple.
theorem
IsSimpleModule.jacobson_eq_bot
(R : Type u_1)
(M : Type u_3)
[Ring R]
[AddCommGroup M]
[Module R M]
[IsSimpleModule R M]
:
theorem
IsSemisimpleModule.jacobson_eq_bot
(R : Type u_1)
(M : Type u_3)
[Ring R]
[AddCommGroup M]
[Module R M]
[IsSemisimpleModule R M]
:
theorem
IsSemisimpleModule.jacobson_le_ker
(R : Type u_1)
(R₂ : Type u_2)
(M : Type u_3)
(M₂ : Type u_4)
[Ring R]
[Ring R₂]
[AddCommGroup M]
[Module R M]
[AddCommGroup M₂]
[Module R₂ M₂]
{τ₁₂ : R →+* R₂}
[RingHomSurjective τ₁₂]
{F : Type u_5}
[FunLike F M M₂]
[SemilinearMapClass F τ₁₂ M M₂]
(f : F)
[IsSemisimpleModule R₂ M₂]
:
theorem
IsSemisimpleModule.jacobson_le_annihilator
(R : Type u_1)
(M : Type u_3)
[Ring R]
[AddCommGroup M]
[Module R M]
[IsSemisimpleModule R M]
:
The Jacobson radical of a ring annihilates every semisimple module.
A ring is semiprimary if its Jacobson radical is nilpotent and its quotient by the Jacobson radical is semisimple.
- isSemisimpleRing : IsSemisimpleRing (R ⧸ Ring.jacobson R)
- isNilpotent : IsNilpotent (Ring.jacobson R)