noncomputable def
MatrixEquivTensor.toFunBilinear
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
:
(Implementation detail).
The function underlying (A ⊗[R] Matrix n n R) →ₐ[R] Matrix n n A
,
as an R
-bilinear map.
Equations
- MatrixEquivTensor.toFunBilinear n R A = (Algebra.lsmul R R (Matrix n n A)).toLinearMap.compl₂ (Algebra.linearMap R A).mapMatrix
Instances For
@[simp]
theorem
MatrixEquivTensor.toFunBilinear_apply
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
(a : A)
(m : Matrix n n R)
:
noncomputable def
MatrixEquivTensor.toFunLinear
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
:
(Implementation detail).
The function underlying (A ⊗[R] Matrix n n R) →ₐ[R] Matrix n n A
,
as an R
-linear map.
Equations
Instances For
noncomputable def
MatrixEquivTensor.toFunAlgHom
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
[DecidableEq n]
[Fintype n]
:
The function (A ⊗[R] Matrix n n R) →ₐ[R] Matrix n n A
, as an algebra homomorphism.
Equations
Instances For
@[simp]
theorem
MatrixEquivTensor.toFunAlgHom_apply
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
[DecidableEq n]
[Fintype n]
(a : A)
(m : Matrix n n R)
:
noncomputable def
MatrixEquivTensor.invFun
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
[DecidableEq n]
[Fintype n]
(M : Matrix n n A)
:
TensorProduct R A (Matrix n n R)
(Implementation detail.)
The bare function Matrix n n A → A ⊗[R] Matrix n n R
.
(We don't need to show that it's an algebra map, thankfully --- just that it's an inverse.)
Equations
- MatrixEquivTensor.invFun n R A M = ∑ p : n × n, M p.1 p.2 ⊗ₜ[R] Matrix.stdBasisMatrix p.1 p.2 1
Instances For
@[simp]
theorem
MatrixEquivTensor.invFun_zero
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
[DecidableEq n]
[Fintype n]
:
@[simp]
theorem
MatrixEquivTensor.invFun_algebraMap
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
[DecidableEq n]
[Fintype n]
(M : Matrix n n R)
:
theorem
MatrixEquivTensor.right_inv
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
[DecidableEq n]
[Fintype n]
(M : Matrix n n A)
:
theorem
MatrixEquivTensor.left_inv
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
[DecidableEq n]
[Fintype n]
(M : TensorProduct R A (Matrix n n R))
:
noncomputable def
MatrixEquivTensor.equiv
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
[DecidableEq n]
[Fintype n]
:
(Implementation detail)
The equivalence, ignoring the algebra structure, (A ⊗[R] Matrix n n R) ≃ Matrix n n A
.
Equations
- MatrixEquivTensor.equiv n R A = { toFun := ⇑(MatrixEquivTensor.toFunAlgHom n R A), invFun := MatrixEquivTensor.invFun n R A, left_inv := ⋯, right_inv := ⋯ }
Instances For
noncomputable def
matrixEquivTensor
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Fintype n]
[DecidableEq n]
:
The R
-algebra isomorphism Matrix n n A ≃ₐ[R] (A ⊗[R] Matrix n n R)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
matrixEquivTensor_apply
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Fintype n]
[DecidableEq n]
(M : Matrix n n A)
:
@[simp]
theorem
matrixEquivTensor_apply_stdBasisMatrix
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Fintype n]
[DecidableEq n]
(i j : n)
(x : A)
:
@[deprecated matrixEquivTensor_apply_stdBasisMatrix (since := "2024-08-11")]
theorem
matrixEquivTensor_apply_std_basis
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Fintype n]
[DecidableEq n]
(i j : n)
(x : A)
:
Alias of matrixEquivTensor_apply_stdBasisMatrix
.
@[simp]
theorem
matrixEquivTensor_apply_symm
(n : Type u_1)
(R : Type u_2)
(A : Type u_3)
[CommSemiring R]
[Semiring A]
[Algebra R A]
[Fintype n]
[DecidableEq n]
(a : A)
(M : Matrix n n R)
: