Documentation

Mathlib.RingTheory.MvPowerSeries.LexOrder

LexOrder of multivariate power series

Given an ordering of σ such that WellOrderGT σ, the lexicographic order on σ →₀ ℕ is a well ordering, which can be used to define a natural valuation lexOrder on the ring MvPowerSeries σ R: the smallest exponent in the support.

noncomputable def MvPowerSeries.lexOrder {σ : Type u_1} {R : Type u_2} [Semiring R] [LinearOrder σ] [WellFoundedGT σ] (φ : MvPowerSeries σ R) :

The lex order on multivariate power series.

Equations
Instances For
    theorem MvPowerSeries.lexOrder_def_of_ne_zero {σ : Type u_1} {R : Type u_2} [Semiring R] [LinearOrder σ] [WellFoundedGT σ] {φ : MvPowerSeries σ R} (hφ : φ 0) :
    ∃ (ne : (toLex '' Function.support φ).Nonempty), φ.lexOrder = (.min (toLex '' Function.support φ) ne)
    @[simp]
    theorem MvPowerSeries.lexOrder_eq_top_iff_eq_zero {σ : Type u_1} {R : Type u_2} [Semiring R] [LinearOrder σ] [WellFoundedGT σ] (φ : MvPowerSeries σ R) :
    φ.lexOrder = φ = 0
    theorem MvPowerSeries.exists_finsupp_eq_lexOrder_of_ne_zero {σ : Type u_1} {R : Type u_2} [Semiring R] [LinearOrder σ] [WellFoundedGT σ] {φ : MvPowerSeries σ R} (hφ : φ 0) :
    ∃ (d : σ →₀ ), φ.lexOrder = (toLex d)
    theorem MvPowerSeries.coeff_ne_zero_of_lexOrder {σ : Type u_1} {R : Type u_2} [Semiring R] [LinearOrder σ] [WellFoundedGT σ] {φ : MvPowerSeries σ R} {d : σ →₀ } (h : (toLex d) = φ.lexOrder) :
    (coeff R d) φ 0
    theorem MvPowerSeries.coeff_eq_zero_of_lt_lexOrder {σ : Type u_1} {R : Type u_2} [Semiring R] [LinearOrder σ] [WellFoundedGT σ] {φ : MvPowerSeries σ R} {d : σ →₀ } (h : (toLex d) < φ.lexOrder) :
    (coeff R d) φ = 0
    theorem MvPowerSeries.lexOrder_le_of_coeff_ne_zero {σ : Type u_1} {R : Type u_2} [Semiring R] [LinearOrder σ] [WellFoundedGT σ] {φ : MvPowerSeries σ R} {d : σ →₀ } (h : (coeff R d) φ 0) :
    φ.lexOrder (toLex d)
    theorem MvPowerSeries.le_lexOrder_iff {σ : Type u_1} {R : Type u_2} [Semiring R] [LinearOrder σ] [WellFoundedGT σ] {φ : MvPowerSeries σ R} {w : WithTop (Lex (σ →₀ ))} :
    w φ.lexOrder ∀ (d : σ →₀ ), (toLex d) < w(coeff R d) φ = 0
    theorem MvPowerSeries.min_lexOrder_le {σ : Type u_1} {R : Type u_2} [Semiring R] [LinearOrder σ] [WellFoundedGT σ] {φ ψ : MvPowerSeries σ R} :
    φ.lexOrder ψ.lexOrder (φ + ψ).lexOrder
    theorem MvPowerSeries.coeff_mul_of_add_lexOrder {σ : Type u_1} {R : Type u_2} [Semiring R] [LinearOrder σ] [WellFoundedGT σ] {φ ψ : MvPowerSeries σ R} {p q : σ →₀ } (hp : φ.lexOrder = (toLex p)) (hq : ψ.lexOrder = (toLex q)) :
    (coeff R (p + q)) (φ * ψ) = (coeff R p) φ * (coeff R q) ψ
    theorem MvPowerSeries.le_lexOrder_mul {σ : Type u_1} {R : Type u_2} [Semiring R] [LinearOrder σ] [WellFoundedGT σ] (φ ψ : MvPowerSeries σ R) :
    φ.lexOrder + ψ.lexOrder (φ * ψ).lexOrder
    theorem MvPowerSeries.lexOrder_mul_ge {σ : Type u_1} {R : Type u_2} [Semiring R] [LinearOrder σ] [WellFoundedGT σ] (φ ψ : MvPowerSeries σ R) :
    φ.lexOrder + ψ.lexOrder (φ * ψ).lexOrder

    Alias of MvPowerSeries.le_lexOrder_mul.

    theorem MvPowerSeries.lexOrder_mul {σ : Type u_1} {R : Type u_2} [Semiring R] [LinearOrder σ] [WellFoundedGT σ] [NoZeroDivisors R] (φ ψ : MvPowerSeries σ R) :
    (φ * ψ).lexOrder = φ.lexOrder + ψ.lexOrder