Cyclotomic polynomials and expand
. #
We gather results relating cyclotomic polynomials and expand
.
Main results #
Polynomial.cyclotomic_expand_eq_cyclotomic_mul
: Ifp
is a prime such that¬ p ∣ n
, thenexpand R p (cyclotomic n R) = (cyclotomic (n * p) R) * (cyclotomic n R)
.Polynomial.cyclotomic_expand_eq_cyclotomic
: Ifp
is a prime such thatp ∣ n
, thenexpand R p (cyclotomic n R) = cyclotomic (p * n) R
.Polynomial.cyclotomic_mul_prime_eq_pow_of_not_dvd
: IfR
is of characteristicp
and¬p ∣ n
, thencyclotomic (n * p) R = (cyclotomic n R) ^ (p - 1)
.Polynomial.cyclotomic_mul_prime_dvd_eq_pow
: IfR
is of characteristicp
andp ∣ n
, thencyclotomic (n * p) R = (cyclotomic n R) ^ p
.Polynomial.cyclotomic_mul_prime_pow_eq
: IfR
is of characteristicp
and¬p ∣ m
, thencyclotomic (p ^ k * m) R = (cyclotomic m R) ^ (p ^ k - p ^ (k - 1))
.
@[simp]
theorem
Polynomial.cyclotomic_expand_eq_cyclotomic_mul
{p n : ℕ}
(hp : Nat.Prime p)
(hdiv : ¬p ∣ n)
(R : Type u_1)
[CommRing R]
:
(Polynomial.expand R p) (Polynomial.cyclotomic n R) = Polynomial.cyclotomic (n * p) R * Polynomial.cyclotomic n R
If p
is a prime such that ¬ p ∣ n
, then
expand R p (cyclotomic n R) = (cyclotomic (n * p) R) * (cyclotomic n R)
.
@[simp]
theorem
Polynomial.cyclotomic_expand_eq_cyclotomic
{p n : ℕ}
(hp : Nat.Prime p)
(hdiv : p ∣ n)
(R : Type u_1)
[CommRing R]
:
(Polynomial.expand R p) (Polynomial.cyclotomic n R) = Polynomial.cyclotomic (n * p) R
If p
is a prime such that p ∣ n
, then
expand R p (cyclotomic n R) = cyclotomic (p * n) R
.
theorem
Polynomial.cyclotomic_irreducible_pow_of_irreducible_pow
{p : ℕ}
(hp : Nat.Prime p)
{R : Type u_1}
[CommRing R]
[IsDomain R]
{n m : ℕ}
(hmn : m ≤ n)
(h : Irreducible (Polynomial.cyclotomic (p ^ n) R))
:
Irreducible (Polynomial.cyclotomic (p ^ m) R)
If the p ^ n
th cyclotomic polynomial is irreducible, so is the p ^ m
th, for m ≤ n
.
theorem
Polynomial.cyclotomic_irreducible_of_irreducible_pow
{p : ℕ}
(hp : Nat.Prime p)
{R : Type u_1}
[CommRing R]
[IsDomain R]
{n : ℕ}
(hn : n ≠ 0)
(h : Irreducible (Polynomial.cyclotomic (p ^ n) R))
:
If Irreducible (cyclotomic (p ^ n) R)
then Irreducible (cyclotomic p R).
theorem
Polynomial.cyclotomic_mul_prime_eq_pow_of_not_dvd
(R : Type u_1)
{p n : ℕ}
[hp : Fact (Nat.Prime p)]
[Ring R]
[CharP R p]
(hn : ¬p ∣ n)
:
Polynomial.cyclotomic (n * p) R = Polynomial.cyclotomic n R ^ (p - 1)
If R
is of characteristic p
and ¬p ∣ n
, then
cyclotomic (n * p) R = (cyclotomic n R) ^ (p - 1)
.
theorem
Polynomial.cyclotomic_mul_prime_dvd_eq_pow
(R : Type u_1)
{p n : ℕ}
[hp : Fact (Nat.Prime p)]
[Ring R]
[CharP R p]
(hn : p ∣ n)
:
Polynomial.cyclotomic (n * p) R = Polynomial.cyclotomic n R ^ p
If R
is of characteristic p
and p ∣ n
, then
cyclotomic (n * p) R = (cyclotomic n R) ^ p
.
theorem
Polynomial.isRoot_cyclotomic_prime_pow_mul_iff_of_charP
{m k p : ℕ}
{R : Type u_1}
[CommRing R]
[IsDomain R]
[hp : Fact (Nat.Prime p)]
[hchar : CharP R p]
{μ : R}
[NeZero ↑m]
:
(Polynomial.cyclotomic (p ^ k * m) R).IsRoot μ ↔ IsPrimitiveRoot μ m
If R
is of characteristic p
and ¬p ∣ m
, then ζ
is a root of cyclotomic (p ^ k * m) R
if and only if it is a primitive m
-th root of unity.