Documentation

Mathlib.RingTheory.Polynomial.GaussNorm

Gauss norm for polynomials #

This file defines the Gauss norm for polynomials. Given a polynomial p in R[X], a function v : R → ℝ and a real number c, the Gauss norm is defined as the supremum of the set of all values of v (p.coeff i) * c ^ i for all i in the support of p.

In the file RingTheory/PowerSeries/GaussNorm, the Gauss norm is defined for power series. This is a generalization of the Gauss norm defined in this file in case v is a non-negative function with v 0 = 0 and c ≥ 0.

Main Definitions and Results #

def Polynomial.gaussNorm {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) (c : ) (p : Polynomial R) :

Given a polynomial p in R[X], a function v : R → ℝ and a real number c, the Gauss norm is defined as the supremum of the set of all values of v (p.coeff i) * c ^ i for all i in the support of p.

Equations
Instances For
    @[simp]
    theorem Polynomial.gaussNorm_zero {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) (c : ) :
    gaussNorm v c 0 = 0
    theorem Polynomial.exists_eq_gaussNorm {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) (c : ) (p : Polynomial R) [ZeroHomClass F R ] :
    ∃ (i : ), gaussNorm v c p = v (p.coeff i) * c ^ i
    @[simp]
    theorem Polynomial.gaussNorm_C {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) (c : ) [ZeroHomClass F R ] (r : R) :
    gaussNorm v c (C r) = v r
    @[simp]
    theorem Polynomial.gaussNorm_monomial {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) (c : ) [ZeroHomClass F R ] (n : ) (r : R) :
    gaussNorm v c ((monomial n) r) = v r * c ^ n
    @[simp]
    theorem Polynomial.gaussNorm_coe_powerSeries {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) {c : } (p : Polynomial R) [ZeroHomClass F R ] [NonnegHomClass F R ] (hc : 0 c) :
    @[simp]
    theorem Polynomial.gaussNorm_eq_zero_iff {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) {c : } (p : Polynomial R) [ZeroHomClass F R ] [NonnegHomClass F R ] (h_eq_zero : ∀ (x : R), v x = 0x = 0) (hc : 0 < c) :
    gaussNorm v c p = 0 p = 0
    theorem Polynomial.gaussNorm_nonneg {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) {c : } (p : Polynomial R) (hc : 0 c) [NonnegHomClass F R ] :
    0 gaussNorm v c p
    theorem Polynomial.le_gaussNorm {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) {c : } (p : Polynomial R) [ZeroHomClass F R ] [NonnegHomClass F R ] (hc : 0 c) (i : ) :
    v (p.coeff i) * c ^ i gaussNorm v c p
    @[simp]
    theorem PowerSeries.gaussNorm_C {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) {c : } (r : R) [ZeroHomClass F R ] [NonnegHomClass F R ] (hc : 0 c) :
    gaussNorm v c ((C R) r) = v r
    @[simp]
    theorem PowerSeries.gaussNorm_monomial {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) {c : } (r : R) [ZeroHomClass F R ] [NonnegHomClass F R ] (hc : 0 c) (n : ) :
    gaussNorm v c ((monomial R n) r) = v r * c ^ n