Documentation

Mathlib.RingTheory.PowerSeries.GaussNorm

Gauss norm for power series #

This file defines the Gauss norm for power series. Given a power series f in R⟦X⟧, a function v : R → ℝ and a real number c, the Gauss norm is defined as the supremum of the set of all values of v (f.coeff R i) * c ^ i for all i : ℕ.

In case f is a polynomial, v is a non-negative function with v 0 = 0 and c ≥ 0, f.gaussNorm v c reduces to the Gauss norm defined in RingTheory/Polynomial/GaussNorm, see Polynomial.gaussNorm_coe_powerSeries.

Main Definitions and Results #

noncomputable def PowerSeries.gaussNorm {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) (c : ) (f : PowerSeries R) :

Given a power series f in R⟦X⟧, a function v : R → ℝ and a real number c, the Gauss norm is defined as the supremum of the set of all values of v (f.coeff R i) * c ^ i for all i : ℕ.

Equations
Instances For
    theorem PowerSeries.le_gaussNorm {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) (c : ) (f : PowerSeries R) (hbd : BddAbove {x : | ∃ (i : ), v ((coeff R i) f) * c ^ i = x}) (i : ) :
    v ((coeff R i) f) * c ^ i gaussNorm v c f
    @[simp]
    theorem PowerSeries.gaussNorm_zero {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) (c : ) [ZeroHomClass F R ] :
    gaussNorm v c 0 = 0
    theorem PowerSeries.gaussNorm_nonneg {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] (v : F) (c : ) (f : PowerSeries R) [NonnegHomClass F R ] :
    0 gaussNorm v c f
    @[simp]
    theorem PowerSeries.gaussNorm_eq_zero_iff {R : Type u_1} {F : Type u_2} [Semiring R] [FunLike F R ] [ZeroHomClass F R ] [NonnegHomClass F R ] {v : F} (h_eq_zero : ∀ (x : R), v x = 0x = 0) {f : PowerSeries R} {c : } (hc : 0 < c) (hbd : BddAbove (Set.range fun (i : ) => v ((coeff R i) f) * c ^ i)) :
    gaussNorm v c f = 0 f = 0