Documentation

Mathlib.RingTheory.Polynomial.ShiftedLegendre

shifted Legendre Polynomials #

In this file, we define the shifted Legendre polynomials shiftedLegendre n for n : ℕ as a polynomial in ℤ[X]. We prove some basic properties of the Legendre polynomials.

Reference #

Tags #

shifted Legendre polynomials, derivative

noncomputable def Polynomial.shiftedLegendre (n : ) :

shiftedLegendre n is an integer polynomial for each n : ℕ, defined by: Pₙ(x) = ∑ k ∈ Finset.range (n + 1), (-1)ᵏ * choose n k * choose (n + k) n * xᵏ These polynomials appear in combinatorics and the theory of orthogonal polynomials.

Equations
Instances For

    The shifted Legendre polynomial multiplied by a factorial equals the higher-order derivative of the combinatorial function X ^ n * (1 - X) ^ n. This is the analogue of Rodrigues' formula for the shifted Legendre polynomials.

    theorem Polynomial.coeff_shiftedLegendre (n k : ) :
    (shiftedLegendre n).coeff k = (-1) ^ k * (n.choose k) * ((n + k).choose n)

    The coefficient of the shifted Legendre polynomial at k is (-1) ^ k * (n.choose k) * (n + k).choose n.

    @[simp]

    The degree of shiftedLegendre n is n.

    theorem Polynomial.shiftedLegendre_eval_symm (n : ) {R : Type u_1} [Ring R] (x : R) :
    (aeval x) (shiftedLegendre n) = (-1) ^ n * (aeval (1 - x)) (shiftedLegendre n)

    The values ​​of the Legendre polynomial at x and 1 - x differ by a factor (-1)ⁿ.