Documentation

Mathlib.RingTheory.PowerSeries.CoeffMulMem

Some results on the coefficients of multiplication of two power series #

Main results #

theorem PowerSeries.coeff_mul_mem_ideal_mul_ideal_of_coeff_mem_ideal {A : Type u_1} [Semiring A] {I J : Ideal A} {f g : PowerSeries A} (n : ) (hf : in, (coeff A i) f I) (hg : in, (coeff A i) g J) (i : ) :
i n(coeff A i) (f * g) I * J
theorem PowerSeries.coeff_mul_mem_ideal_mul_ideal_of_coeff_mem_ideal' {A : Type u_1} [Semiring A] {I J : Ideal A} {f g : PowerSeries A} (hf : ∀ (i : ), (coeff A i) f I) (hg : ∀ (i : ), (coeff A i) g J) (i : ) :
(coeff A i) (f * g) I * J
theorem PowerSeries.coeff_mul_mem_ideal_of_coeff_right_mem_ideal {A : Type u_1} [Semiring A] {I : Ideal A} {f g : PowerSeries A} (n : ) (hg : in, (coeff A i) g I) (i : ) :
i n(coeff A i) (f * g) I
theorem PowerSeries.coeff_mul_mem_ideal_of_coeff_right_mem_ideal' {A : Type u_1} [Semiring A] {I : Ideal A} {f g : PowerSeries A} (hg : ∀ (i : ), (coeff A i) g I) (i : ) :
(coeff A i) (f * g) I
theorem PowerSeries.coeff_mul_mem_ideal_of_coeff_left_mem_ideal {A : Type u_1} [Semiring A] {I : Ideal A} {f g : PowerSeries A} (n : ) [I.IsTwoSided] (hf : in, (coeff A i) f I) (i : ) :
i n(coeff A i) (f * g) I
theorem PowerSeries.coeff_mul_mem_ideal_of_coeff_left_mem_ideal' {A : Type u_1} [Semiring A] {I : Ideal A} {f g : PowerSeries A} [I.IsTwoSided] (hf : ∀ (i : ), (coeff A i) f I) (i : ) :
(coeff A i) (f * g) I