Documentation

Mathlib.RingTheory.PowerSeries.Restricted

Restricted power series #

IsRestricted : We say a power series over a normed ring R is restricted for a parameter c if ‖coeff R i f‖ * c ^ i → 0.

def PowerSeries.IsRestricted {R : Type u_1} [NormedRing R] (c : ) (f : PowerSeries R) :

A power series over R is restricted of paramerter c if we have ‖coeff R i f‖ * c ^ i → 0.

Equations
Instances For
    theorem PowerSeries.IsRestricted.isRestricted_iff {R : Type u_1} [NormedRing R] (c : ) {f : PowerSeries R} :
    IsRestricted c f ∀ (ε : ), 0 < ε∃ (N : ), ∀ (n : ), N n(coeff n) f * c ^ n < ε
    theorem PowerSeries.IsRestricted.add {R : Type u_1} [NormedRing R] (c : ) {f g : PowerSeries R} (hf : IsRestricted c f) (hg : IsRestricted c g) :
    IsRestricted c (f + g)
    theorem PowerSeries.IsRestricted.neg {R : Type u_1} [NormedRing R] (c : ) {f : PowerSeries R} (hf : IsRestricted c f) :
    theorem PowerSeries.IsRestricted.smul {R : Type u_1} [NormedRing R] (c : ) {f : PowerSeries R} (hf : IsRestricted c f) (r : R) :

    The set of ‖coeff R i f‖ * c ^ i for a given power series f and parameter c.

    Equations
    Instances For
      theorem PowerSeries.IsRestricted.mul {R : Type u_1} [NormedRing R] (c : ) [IsUltrametricDist R] {f g : PowerSeries R} (hf : IsRestricted c f) (hg : IsRestricted c g) :
      IsRestricted c (f * g)