Restricted power series #
IsRestricted
: We say a power series over a normed ring R
is restricted for a parameter c
if
‖coeff R i f‖ * c ^ i → 0
.
A power series over R
is restricted of paramerter c
if we have
‖coeff R i f‖ * c ^ i → 0
.
Equations
- PowerSeries.IsRestricted c f = Filter.Tendsto (fun (i : ℕ) => ‖(PowerSeries.coeff i) f‖ * c ^ i) Filter.atTop (nhds 0)
Instances For
theorem
PowerSeries.IsRestricted.isRestricted_iff_abs
{R : Type u_1}
[NormedRing R]
(c : ℝ)
(f : PowerSeries R)
:
theorem
PowerSeries.IsRestricted.monomial
{R : Type u_1}
[NormedRing R]
(c : ℝ)
(n : ℕ)
(a : R)
:
IsRestricted c ((PowerSeries.monomial n) a)
theorem
PowerSeries.IsRestricted.C
{R : Type u_1}
[NormedRing R]
(c : ℝ)
(a : R)
:
IsRestricted c (PowerSeries.C a)
theorem
PowerSeries.IsRestricted.add
{R : Type u_1}
[NormedRing R]
(c : ℝ)
{f g : PowerSeries R}
(hf : IsRestricted c f)
(hg : IsRestricted c g)
:
IsRestricted c (f + g)
theorem
PowerSeries.IsRestricted.neg
{R : Type u_1}
[NormedRing R]
(c : ℝ)
{f : PowerSeries R}
(hf : IsRestricted c f)
:
IsRestricted c (-f)
theorem
PowerSeries.IsRestricted.smul
{R : Type u_1}
[NormedRing R]
(c : ℝ)
{f : PowerSeries R}
(hf : IsRestricted c f)
(r : R)
:
IsRestricted c (r • f)
def
PowerSeries.IsRestricted.convergenceSet
{R : Type u_1}
[NormedRing R]
(c : ℝ)
(f : PowerSeries R)
:
The set of ‖coeff R i f‖ * c ^ i
for a given power series f
and parameter c
.
Equations
Instances For
theorem
PowerSeries.IsRestricted.convergenceSet_BddAbove
{R : Type u_1}
[NormedRing R]
(c : ℝ)
{f : PowerSeries R}
(hf : IsRestricted c f)
:
BddAbove (convergenceSet c f)
theorem
PowerSeries.IsRestricted.mul
{R : Type u_1}
[NormedRing R]
(c : ℝ)
[IsUltrametricDist R]
{f g : PowerSeries R}
(hf : IsRestricted c f)
(hg : IsRestricted c g)
:
IsRestricted c (f * g)