Meta properties of bijective ring homomorphisms #
We show some meta properties of bijective ring homomorphisms.
Implementation details #
We don't define a RingHom.Bijective
predicate, but use fun f ↦ Function.Bijective f
as
the ring hom property.
theorem
RingHom.Bijective.containsIdentities :
ContainsIdentities fun {R S : Type u_3} [CommRing R] [CommRing S] (f : R →+* S) => Function.Bijective ⇑f
theorem
RingHom.Bijective.stableUnderComposition :
StableUnderComposition fun {R S : Type u_3} [CommRing R] [CommRing S] (f : R →+* S) => Function.Bijective ⇑f
theorem
RingHom.Bijective.respectsIso :
RespectsIso fun {R S : Type u_3} [CommRing R] [CommRing S] (f : R →+* S) => Function.Bijective ⇑f
theorem
RingHom.Bijective.isStableUnderBaseChange :
IsStableUnderBaseChange fun {R S : Type u_3} [CommRing R] [CommRing S] (f : R →+* S) => Function.Bijective ⇑f
theorem
RingHom.Bijective.ofLocalizationSpan :
OfLocalizationSpan fun {R S : Type u_3} [CommRing R] [CommRing S] (f : R →+* S) => Function.Bijective ⇑f