Smooth ring homomorphisms #
In this file we define smooth ring homomorphisms and show their meta properties.
A ring homomorphism f : R →+* S
is formally smooth
if S
is formally smooth as an R
algebra.
Equations
Instances For
theorem
RingHom.FormallySmooth.toAlgebra
{R S : Type u}
[CommRing R]
[CommRing S]
{f : R →+* S}
(hf : f.FormallySmooth)
:
Helper lemma for the algebraize
tactic
A ring homomorphism f : R →+* S
is smooth if S
is smooth as an R
algebra.
Equations
- f.Smooth = Algebra.Smooth R S
Instances For
theorem
RingHom.Smooth.toAlgebra
{R S : Type u}
[CommRing R]
[CommRing S]
{f : R →+* S}
(hf : f.Smooth)
:
Algebra.Smooth R S
Helper lemma for the algebraize
tactic
theorem
RingHom.Smooth.stableUnderComposition :
StableUnderComposition fun {R S : Type u_1} [CommRing R] [CommRing S] => Smooth
theorem
RingHom.Smooth.isStableUnderBaseChange :
IsStableUnderBaseChange fun {R S : Type u_1} [CommRing R] [CommRing S] => Smooth
theorem
RingHom.Smooth.holdsForLocalizationAway :
HoldsForLocalizationAway fun {R S : Type u_1} [CommRing R] [CommRing S] => Smooth
The identity of a ring is smooth.
theorem
RingHom.Smooth.ofLocalizationSpanTarget :
OfLocalizationSpanTarget fun {R S : Type u_1} [CommRing R] [CommRing S] => Smooth
theorem
RingHom.Smooth.propertyIsLocal :
PropertyIsLocal fun {R S : Type u_1} [CommRing R] [CommRing S] => Smooth
Smoothness is a local property of ring homomorphisms.