Documentation

Mathlib.RingTheory.RingHom.Smooth

Smooth ring homomorphisms #

In this file we define smooth ring homomorphisms and show their meta properties.

def RingHom.FormallySmooth {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R →+* S) :

A ring homomorphism f : R →+* S is formally smooth if S is formally smooth as an R algebra.

Equations
Instances For
    theorem RingHom.FormallySmooth.toAlgebra {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] {f : R →+* S} (hf : f.FormallySmooth) :

    Helper lemma for the algebraize tactic

    def RingHom.Smooth {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R →+* S) :

    A ring homomorphism f : R →+* S is smooth if S is smooth as an R algebra.

    Equations
    Instances For
      theorem RingHom.Smooth.toAlgebra {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] {f : R →+* S} (hf : f.Smooth) :

      Helper lemma for the algebraize tactic

      theorem RingHom.Smooth.comp {R : Type u_3} {S : Type u_4} {T : Type u_5} [CommRing R] [CommRing S] [CommRing T] {f : R →+* S} {g : S →+* T} (hf : f.Smooth) (hg : g.Smooth) :
      (g.comp f).Smooth

      Composition of smooth ring homomorphisms is smooth.

      theorem RingHom.Smooth.id (R : Type u_3) [CommRing R] :

      The identity of a ring is smooth.

      Smoothness is a local property of ring homomorphisms.