Chevalley's theorem #
In this file we provide the usual (algebraic) version of Chevalley's theorem.
For the proof see Mathlib/RingTheory/Spectrum/Prime/ChevalleyComplexity.lean
.
theorem
PrimeSpectrum.isConstructible_comap_C
{R : Type u_1}
[CommRing R]
{s : Set (PrimeSpectrum (Polynomial R))}
(hs : Topology.IsConstructible s)
:
theorem
PrimeSpectrum.isConstructible_comap_image
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{f : R →+* S}
(hf : f.FinitePresentation)
{s : Set (PrimeSpectrum S)}
(hs : Topology.IsConstructible s)
:
Topology.IsConstructible (⇑(comap f) '' s)
Chevalley's theorem: If f
is of finite presentation,
then the image of a constructible set under Spec(f)
is constructible.
theorem
PrimeSpectrum.isConstructible_range_comap
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{f : R →+* S}
(hf : f.FinitePresentation)
:
theorem
PrimeSpectrum.isOpenMap_comap_of_hasGoingDown_of_finitePresentation
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
[Algebra.HasGoingDown R S]
[Algebra.FinitePresentation R S]
:
IsOpenMap ⇑(comap (algebraMap R S))