Documentation

Mathlib.RingTheory.Ideal.GoingDown

Going down #

In this file we define a predicate Algebra.HasGoingDown: An R-algebra S satisfies Algebra.HasGoingDown R S if for every pair of prime ideals p ≤ q of R with Q a prime of S lying above q, there exists a prime P ≤ Q of S lying above p.

Main results #

TODOs #

class Algebra.HasGoingDown (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] :

An R-algebra S satisfies Algebra.HasGoingDown R S if for every pair of prime ideals p ≤ q of R with Q a prime of S lying above q, there exists a prime P ≤ Q of S lying above p.

The condition only asks for < which is easier to prove, use Ideal.exists_ideal_le_liesOver_of_le for applying it.

Stacks Tag 00HV ((2))

Instances
    theorem Ideal.exists_ideal_le_liesOver_of_le {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [Algebra.HasGoingDown R S] {p q : Ideal R} [p.IsPrime] [q.IsPrime] (Q : Ideal S) [Q.IsPrime] [Q.LiesOver q] (hle : p q) :
    PQ, P.IsPrime P.LiesOver p
    theorem Ideal.exists_ideal_lt_liesOver_of_lt {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [Algebra.HasGoingDown R S] {p q : Ideal R} [p.IsPrime] [q.IsPrime] (Q : Ideal S) [Q.IsPrime] [Q.LiesOver q] (hpq : p < q) :
    P < Q, P.IsPrime P.LiesOver p

    An R-algebra S has the going down property if and only if generalizations lift along Spec S → Spec R.

    Stacks Tag 00HW ((1))

    theorem Algebra.HasGoingDown.trans (R : Type u_3) (S : Type u_4) [CommRing R] [CommRing S] [Algebra R S] (T : Type u_5) [CommRing T] [Algebra R T] [Algebra S T] [IsScalarTower R S T] [HasGoingDown R S] [HasGoingDown S T] :

    Stacks Tag 00HX

    If for every prime of S, the map Spec Sₚ → Spec Rₚ is surjective, the algebra satisfies going down.

    instance Algebra.HasGoingDown.of_flat {R : Type u_3} {S : Type u_4} [CommRing R] [CommRing S] [Algebra R S] [Module.Flat R S] :

    Flat algebras satisfy the going down property.

    Stacks Tag 00HS