Documentation

Mathlib.RingTheory.Spectrum.Prime.RingHom

Functoriality of the prime spectrum #

In this file we define the induced map on prime spectra induced by a ring homomorphism.

Main definitions #

@[reducible, inline]
abbrev RingHom.specComap {R : Type u_1} {S : Type u_2} [CommSemiring R] [CommSemiring S] (f : R →+* S) :

The pullback of an element of PrimeSpectrum S along a ring homomorphism f : R →+* S. The bundled continuous version is PrimeSpectrum.comap.

Equations
Instances For
    @[simp]
    @[simp]
    theorem PrimeSpectrum.specComap_comp {R : Type u} {S : Type v} {S' : Type u_1} [CommSemiring R] [CommSemiring S] [CommSemiring S'] (f : R →+* S) (g : S →+* S') :
    theorem PrimeSpectrum.specComap_comp_apply {R : Type u} {S : Type v} {S' : Type u_1} [CommSemiring R] [CommSemiring S] [CommSemiring S'] (f : R →+* S) (g : S →+* S') (x : PrimeSpectrum S') :
    @[simp]

    RingHom.specComap of an isomorphism of rings as an equivalence of their prime spectra.

    Equations
    Instances For
      @[simp]
      theorem PrimeSpectrum.comapEquiv_apply {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (e : R ≃+* S) (a✝ : PrimeSpectrum R) :
      @[simp]
      theorem PrimeSpectrum.comapEquiv_symm_apply {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (e : R ≃+* S) (a✝ : PrimeSpectrum S) :
      def PrimeSpectrum.sigmaToPi {ι : Type u_3} (R : ιType u_2) [(i : ι) → CommSemiring (R i)] :
      (i : ι) × PrimeSpectrum (R i)PrimeSpectrum ((i : ι) → R i)

      The canonical map from a disjoint union of prime spectra of commutative semirings to the prime spectrum of the product semiring.

      Equations
      Instances For
        @[simp]
        theorem PrimeSpectrum.sigmaToPi_asIdeal {ι : Type u_3} (R : ιType u_2) [(i : ι) → CommSemiring (R i)] (a✝ : (i : ι) × PrimeSpectrum (R i)) :
        theorem PrimeSpectrum.sigmaToPi_injective {ι : Type u_3} (R : ιType u_2) [(i : ι) → CommSemiring (R i)] :
        theorem PrimeSpectrum.exists_maximal_nmem_range_sigmaToPi_of_infinite {ι : Type u_3} (R : ιType u_2) [(i : ι) → CommSemiring (R i)] [Infinite ι] [∀ (i : ι), Nontrivial (R i)] :
        ∃ (I : Ideal ((i : ι) → R i)) (x : I.IsMaximal), { asIdeal := I, isPrime := }Set.range (sigmaToPi R)

        An infinite product of nontrivial commutative semirings has a maximal ideal outside of the range of sigmaToPi, i.e. is not of the form πᵢ⁻¹(𝔭) for some prime 𝔭 ⊂ R i, where πᵢ : (Π i, R i) →+* R i is the projection. For a complete description of all prime ideals, see https://math.stackexchange.com/a/1563190.

        theorem PrimeSpectrum.sigmaToPi_not_surjective_of_infinite {ι : Type u_3} (R : ιType u_2) [(i : ι) → CommSemiring (R i)] [Infinite ι] [∀ (i : ι), Nontrivial (R i)] :

        p is in the image of Spec S → Spec R if and only if p extended to S and restricted back to R is p.