Documentation

Mathlib.RingTheory.LocalRing.ResidueField.Ideal

The residue field of a prime ideal #

We define Ideal.ResidueField I to be the residue field of the local ring Localization.Prime I, and provide an IsFractionRing (R ⧸ I) I.ResidueField instance.

@[reducible, inline]
abbrev Ideal.ResidueField {R : Type u_1} [CommRing R] (I : Ideal R) [I.IsPrime] :
Type u_1

The residue field at a prime ideal, defined to be the residue field of the local ring Localization.Prime I. We also provide an IsFractionRing (R ⧸ I) I.ResidueField instance.

Equations
Instances For
    @[reducible, inline]
    noncomputable abbrev Ideal.ResidueField.map {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] (I : Ideal R) [I.IsPrime] (J : Ideal A) [J.IsPrime] (f : R →+* A) (hf : I = comap f J) :

    If I = f⁻¹(J), then there is an canonical embedding κ(I) ↪ κ(J).

    Equations
    Instances For
      noncomputable def Ideal.ResidueField.mapₐ {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (I : Ideal R) [I.IsPrime] (J : Ideal A) [J.IsPrime] (hf : I = comap (algebraMap R A) J) :

      If I = f⁻¹(J), then there is an canonical embedding κ(I) ↪ κ(J).

      Equations
      Instances For
        @[simp]
        theorem Ideal.ResidueField.mapₐ_apply {R : Type u_1} {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (I : Ideal R) [I.IsPrime] (J : Ideal A) [J.IsPrime] (hf : I = comap (algebraMap R A) J) (x : I.ResidueField) :
        (mapₐ I J hf) x = (map I J (algebraMap R A) hf) x
        @[simp]
        theorem Ideal.algebraMap_residueField_eq_zero {R : Type u_1} [CommRing R] {I : Ideal R} [I.IsPrime] {x : R} :
        @[simp]
        theorem algebraMap_mk {R : Type u_1} [CommRing R] (I : Ideal R) [I.IsPrime] (x : R) :