The residue field of a prime ideal #
We define Ideal.ResidueField I
to be the residue field of the local ring Localization.Prime I
,
and provide an IsFractionRing (R ⧸ I) I.ResidueField
instance.
@[reducible, inline]
The residue field at a prime ideal, defined to be the residue field of the local ring
Localization.Prime I
.
We also provide an IsFractionRing (R ⧸ I) I.ResidueField
instance.
Equations
- I.ResidueField = IsLocalRing.ResidueField (Localization.AtPrime I)
Instances For
@[reducible, inline]
noncomputable abbrev
Ideal.ResidueField.map
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
(I : Ideal R)
[I.IsPrime]
(J : Ideal A)
[J.IsPrime]
(f : R →+* A)
(hf : I = Ideal.comap f J)
:
I.ResidueField →+* J.ResidueField
If I = f⁻¹(J)
, then there is an canonical embedding κ(I) ↪ κ(J)
.
Equations
- Ideal.ResidueField.map I J f hf = IsLocalRing.ResidueField.map (Localization.localRingHom I J f hf)
Instances For
noncomputable def
Ideal.ResidueField.mapₐ
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(I : Ideal R)
[I.IsPrime]
(J : Ideal A)
[J.IsPrime]
(hf : I = Ideal.comap (algebraMap R A) J)
:
If I = f⁻¹(J)
, then there is an canonical embedding κ(I) ↪ κ(J)
.
Equations
- Ideal.ResidueField.mapₐ I J hf = { toRingHom := Ideal.ResidueField.map I J (algebraMap R A) hf, commutes' := ⋯ }
Instances For
@[simp]
theorem
Ideal.ResidueField.mapₐ_apply
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(I : Ideal R)
[I.IsPrime]
(J : Ideal A)
[J.IsPrime]
(hf : I = Ideal.comap (algebraMap R A) J)
(x : I.ResidueField)
:
(Ideal.ResidueField.mapₐ I J hf) x = (Ideal.ResidueField.map I J (algebraMap R A) hf) x
@[simp]
theorem
Ideal.algebraMap_residueField_eq_zero
{R : Type u_1}
[CommRing R]
{I : Ideal R}
[I.IsPrime]
{x : R}
:
(algebraMap R I.ResidueField) x = 0 ↔ x ∈ I
@[simp]
theorem
Ideal.ker_algebraMap_residueField
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
:
RingHom.ker (algebraMap R I.ResidueField) = I
instance
instAlgebraQuotientIdealResidueField
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
:
Equations
- instAlgebraQuotientIdealResidueField I = (Ideal.Quotient.liftₐ I (Algebra.ofId R I.ResidueField) ⋯).toAlgebra
instance
instIsScalarTowerQuotientIdealResidueField
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
:
IsScalarTower R (R ⧸ I) I.ResidueField
@[simp]
theorem
algebraMap_mk
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
(x : R)
:
(algebraMap (R ⧸ I) I.ResidueField) ((Ideal.Quotient.mk I) x) = (algebraMap R I.ResidueField) x
theorem
Ideal.injective_algebraMap_quotient_residueField
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
:
Function.Injective ⇑(algebraMap (R ⧸ I) I.ResidueField)
instance
instIsFractionRingQuotientIdealResidueField
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsPrime]
:
IsFractionRing (R ⧸ I) I.ResidueField
theorem
Ideal.bijective_algebraMap_quotient_residueField
{R : Type u_1}
[CommRing R]
(I : Ideal R)
[I.IsMaximal]
:
Function.Bijective ⇑(algebraMap (R ⧸ I) I.ResidueField)