Documentation

Mathlib.RingTheory.LocalRing.ResidueField.Basic

Residue Field of local rings #

We prove basic properties of the residue field of a local ring.

instance IsLocalRing.instIsScalarTowerResidueField (R : Type u_1) [CommRing R] [IsLocalRing R] {R₁ : Type u_4} {R₂ : Type u_5} [CommRing R₁] [CommRing R₂] [Algebra R₁ R₂] [Algebra R₁ R] [Algebra R₂ R] [IsScalarTower R₁ R₂ R] :

A local ring homomorphism into a field can be descended onto the residue field.

Equations
Instances For
    @[simp]

    The map on residue fields induced by a local homomorphism between local rings

    Equations
    Instances For
      @[simp]

      Applying IsLocalRing.ResidueField.map to the identity ring homomorphism gives the identity ring homomorphism.

      A ring isomorphism defines an isomorphism of residue fields.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]

        The group homomorphism from RingAut R to RingAut k where k is the residue field of R.

        Equations
        • IsLocalRing.ResidueField.mapAut = { toFun := IsLocalRing.ResidueField.mapEquiv, map_one' := , map_mul' := }
        Instances For
          @[simp]
          theorem IsLocalRing.ResidueField.mapAut_apply {R : Type u_1} [CommRing R] [IsLocalRing R] (f : R ≃+* R) :
          IsLocalRing.ResidueField.mapAut f = IsLocalRing.ResidueField.mapEquiv f
          @[simp]
          theorem IsLocalRing.ResidueField.residue_smul {R : Type u_1} [CommRing R] [IsLocalRing R] (G : Type u_4) [Group G] [MulSemiringAction G R] (g : G) (r : R) :
          Equations
          @[deprecated IsLocalRing.isLocalHom_residue]

          Alias of IsLocalRing.isLocalHom_residue.

          @[deprecated IsLocalRing.ker_residue]

          Alias of IsLocalRing.ker_residue.

          @[deprecated IsLocalRing.residue_eq_zero_iff]

          Alias of IsLocalRing.residue_eq_zero_iff.

          @[deprecated IsLocalRing.residue_ne_zero_iff_isUnit]

          Alias of IsLocalRing.residue_ne_zero_iff_isUnit.

          @[deprecated IsLocalRing.residue_surjective]

          Alias of IsLocalRing.residue_surjective.

          @[deprecated IsLocalRing.ResidueField.algebraMap_eq]

          Alias of IsLocalRing.ResidueField.algebraMap_eq.

          @[deprecated IsLocalRing.ResidueField.lift]

          Alias of IsLocalRing.ResidueField.lift.


          A local ring homomorphism into a field can be descended onto the residue field.

          Equations
          Instances For
            @[deprecated IsLocalRing.ResidueField.lift_comp_residue]

            Alias of IsLocalRing.ResidueField.lift_comp_residue.

            @[deprecated IsLocalRing.ResidueField.lift_residue_apply]

            Alias of IsLocalRing.ResidueField.lift_residue_apply.

            @[deprecated IsLocalRing.ResidueField.map]

            Alias of IsLocalRing.ResidueField.map.


            The map on residue fields induced by a local homomorphism between local rings

            Equations
            Instances For
              @[deprecated IsLocalRing.ResidueField.map_id]

              Alias of IsLocalRing.ResidueField.map_id.


              Applying IsLocalRing.ResidueField.map to the identity ring homomorphism gives the identity ring homomorphism.

              @[deprecated IsLocalRing.ResidueField.map_comp]

              Alias of IsLocalRing.ResidueField.map_comp.


              The composite of two IsLocalRing.ResidueField.maps is the IsLocalRing.ResidueField.map of the composite.

              @[deprecated IsLocalRing.ResidueField.map_comp_residue]

              Alias of IsLocalRing.ResidueField.map_comp_residue.

              @[deprecated IsLocalRing.ResidueField.map_residue]

              Alias of IsLocalRing.ResidueField.map_residue.

              @[deprecated IsLocalRing.ResidueField.map_id_apply]

              Alias of IsLocalRing.ResidueField.map_id_apply.

              @[deprecated IsLocalRing.ResidueField.map_map]

              Alias of IsLocalRing.ResidueField.map_map.

              @[deprecated IsLocalRing.ResidueField.mapEquiv]

              Alias of IsLocalRing.ResidueField.mapEquiv.


              A ring isomorphism defines an isomorphism of residue fields.

              Equations
              Instances For
                @[deprecated IsLocalRing.ResidueField.mapEquiv.symm]

                Alias of IsLocalRing.ResidueField.mapEquiv.symm.

                @[deprecated IsLocalRing.ResidueField.mapEquiv_trans]

                Alias of IsLocalRing.ResidueField.mapEquiv_trans.

                @[deprecated IsLocalRing.ResidueField.mapAut]

                Alias of IsLocalRing.ResidueField.mapAut.


                The group homomorphism from RingAut R to RingAut k where k is the residue field of R.

                Equations
                Instances For
                  @[deprecated IsLocalRing.ResidueField.residue_smul]
                  theorem LocalRing.ResidueField.residue_smul {R : Type u_1} [CommRing R] [IsLocalRing R] (G : Type u_4) [Group G] [MulSemiringAction G R] (g : G) (r : R) :

                  Alias of IsLocalRing.ResidueField.residue_smul.

                  @[deprecated IsLocalRing.ResidueField.finite_of_finite]

                  Alias of IsLocalRing.ResidueField.finite_of_finite.