Residue Field of local rings #
We prove basic properties of the residue field of a local ring.
Equations
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
A local ring homomorphism into a field can be descended onto the residue field.
Equations
Instances For
The map on residue fields induced by a local homomorphism between local rings
Equations
Instances For
Applying IsLocalRing.ResidueField.map
to the identity ring homomorphism gives the identity
ring homomorphism.
The composite of two IsLocalRing.ResidueField.map
s is the IsLocalRing.ResidueField.map
of
the composite.
A ring isomorphism defines an isomorphism of residue fields.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The group homomorphism from RingAut R
to RingAut k
where k
is the residue field of R
.
Equations
- IsLocalRing.ResidueField.mapAut = { toFun := IsLocalRing.ResidueField.mapEquiv, map_one' := ⋯, map_mul' := ⋯ }
Instances For
If G
acts on R
as a MulSemiringAction
, then it also acts on IsLocalRing.ResidueField R
.
Equations
- IsLocalRing.ResidueField.instMulSemiringAction G = MulSemiringAction.compHom (IsLocalRing.ResidueField R) (IsLocalRing.ResidueField.mapAut.comp (MulSemiringAction.toRingAut G R))
Equations
- IsLocalRing.ResidueField.instAlgebra = (IsLocalRing.ResidueField.map (algebraMap R S)).toAlgebra
Equations
- IsLocalRing.ResidueField.instAlgebra_1 = ((IsLocalRing.ResidueField.map (algebraMap R S)).comp (IsLocalRing.residue R)).toAlgebra
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
Alias of IsLocalRing.isLocalHom_residue
.
Alias of IsLocalRing.ker_residue
.
Alias of IsLocalRing.residue_eq_zero_iff
.
Alias of IsLocalRing.residue_ne_zero_iff_isUnit
.
Alias of IsLocalRing.residue_surjective
.
Alias of IsLocalRing.ResidueField.algebraMap_eq
.
Alias of IsLocalRing.ResidueField.lift
.
A local ring homomorphism into a field can be descended onto the residue field.
Instances For
Alias of IsLocalRing.ResidueField.map
.
The map on residue fields induced by a local homomorphism between local rings
Instances For
Alias of IsLocalRing.ResidueField.map_id
.
Applying IsLocalRing.ResidueField.map
to the identity ring homomorphism gives the identity
ring homomorphism.
Alias of IsLocalRing.ResidueField.map_comp
.
The composite of two IsLocalRing.ResidueField.map
s is the IsLocalRing.ResidueField.map
of
the composite.
Alias of IsLocalRing.ResidueField.map_residue
.
Alias of IsLocalRing.ResidueField.map_id_apply
.
Alias of IsLocalRing.ResidueField.map_map
.
Alias of IsLocalRing.ResidueField.mapEquiv
.
A ring isomorphism defines an isomorphism of residue fields.
Instances For
Alias of IsLocalRing.ResidueField.mapEquiv.symm
.
Alias of IsLocalRing.ResidueField.mapEquiv_trans
.
Alias of IsLocalRing.ResidueField.mapEquiv_refl
.
Alias of IsLocalRing.ResidueField.mapAut
.
The group homomorphism from RingAut R
to RingAut k
where k
is the residue field of R
.
Instances For
Alias of IsLocalRing.ResidueField.residue_smul
.