Documentation

Mathlib.RingTheory.LocalRing.ResidueField.Basic

Residue Field of local rings #

We prove basic properties of the residue field of a local ring.

@[simp]
theorem IsLocalRing.residue_eq_zero_iff {R : Type u_1} [CommRing R] [IsLocalRing R] (x : R) :
instance IsLocalRing.instIsScalarTowerResidueField (R : Type u_1) [CommRing R] [IsLocalRing R] {R₁ : Type u_4} {R₂ : Type u_5} [CommRing R₁] [CommRing R₂] [Algebra R₁ R₂] [Algebra R₁ R] [Algebra R₂ R] [IsScalarTower R₁ R₂ R] :
instance IsLocalRing.instFiniteResidueField (R : Type u_1) [CommRing R] [IsLocalRing R] {R₀ : Type u_4} [CommRing R₀] [Algebra R₀ R] [Module.Finite R₀ R] :
def IsLocalRing.ResidueField.lift {R : Type u_4} {S : Type u_5} [CommRing R] [IsLocalRing R] [Field S] (f : R →+* S) [IsLocalHom f] :

A local ring homomorphism into a field can be descended onto the residue field.

Equations
Instances For
    theorem IsLocalRing.ResidueField.lift_comp_residue {R : Type u_4} {S : Type u_5} [CommRing R] [IsLocalRing R] [Field S] (f : R →+* S) [IsLocalHom f] :
    (lift f).comp (residue R) = f
    @[simp]
    theorem IsLocalRing.ResidueField.lift_residue_apply {R : Type u_4} {S : Type u_5} [CommRing R] [IsLocalRing R] [Field S] (f : R →+* S) [IsLocalHom f] (x : R) :
    (lift f) ((residue R) x) = f x
    noncomputable def IsLocalRing.ResidueField.map {R : Type u_1} {S : Type u_2} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] (f : R →+* S) [IsLocalHom f] :

    The map on residue fields induced by a local homomorphism between local rings

    Equations
    Instances For
      @[simp]

      Applying IsLocalRing.ResidueField.map to the identity ring homomorphism gives the identity ring homomorphism.

      theorem IsLocalRing.ResidueField.map_comp {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] [CommRing T] [IsLocalRing T] (f : T →+* R) (g : R →+* S) [IsLocalHom f] [IsLocalHom g] :
      map (g.comp f) = (map g).comp (map f)

      The composite of two IsLocalRing.ResidueField.maps is the IsLocalRing.ResidueField.map of the composite.

      theorem IsLocalRing.ResidueField.map_residue {R : Type u_1} {S : Type u_2} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] (f : R →+* S) [IsLocalHom f] (r : R) :
      (map f) ((residue R) r) = (residue S) (f r)
      @[simp]
      theorem IsLocalRing.ResidueField.map_map {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] [CommRing T] [IsLocalRing T] (f : R →+* S) (g : S →+* T) (x : ResidueField R) [IsLocalHom f] [IsLocalHom g] :
      (map g) ((map f) x) = (map (g.comp f)) x
      noncomputable def IsLocalRing.ResidueField.mapEquiv {R : Type u_1} {S : Type u_2} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] (f : R ≃+* S) :

      A ring isomorphism defines an isomorphism of residue fields.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem IsLocalRing.ResidueField.mapEquiv_apply {R : Type u_1} {S : Type u_2} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] (f : R ≃+* S) (a : ResidueField R) :
        (mapEquiv f) a = (map f) a
        @[simp]
        @[simp]
        theorem IsLocalRing.ResidueField.mapEquiv_trans {R : Type u_1} {S : Type u_2} {T : Type u_3} [CommRing R] [IsLocalRing R] [CommRing S] [IsLocalRing S] [CommRing T] [IsLocalRing T] (e₁ : R ≃+* S) (e₂ : S ≃+* T) :
        mapEquiv (e₁.trans e₂) = (mapEquiv e₁).trans (mapEquiv e₂)

        The group homomorphism from RingAut R to RingAut k where k is the residue field of R.

        Equations
        Instances For
          @[simp]
          theorem IsLocalRing.ResidueField.residue_smul {R : Type u_1} [CommRing R] [IsLocalRing R] (G : Type u_4) [Group G] [MulSemiringAction G R] (g : G) (r : R) :
          (residue R) (g r) = g (residue R) r