Residue Field of local rings #
We prove basic properties of the residue field of a local ring.
@[simp]
theorem
IsLocalRing.residue_ne_zero_iff_isUnit
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(x : R)
:
instance
IsLocalRing.ResidueField.algebra
(R : Type u_1)
[CommRing R]
[IsLocalRing R]
{R₀ : Type u_4}
[CommRing R₀]
[Algebra R₀ R]
:
Algebra R₀ (ResidueField R)
Equations
instance
IsLocalRing.instIsScalarTowerResidueField
(R : Type u_1)
[CommRing R]
[IsLocalRing R]
{R₁ : Type u_4}
{R₂ : Type u_5}
[CommRing R₁]
[CommRing R₂]
[Algebra R₁ R₂]
[Algebra R₁ R]
[Algebra R₂ R]
[IsScalarTower R₁ R₂ R]
:
IsScalarTower R₁ R₂ (ResidueField R)
@[simp]
instance
IsLocalRing.instIsLocalHomResidueFieldRingHomResidue
(R : Type u_1)
[CommRing R]
[IsLocalRing R]
:
IsLocalHom (residue R)
instance
IsLocalRing.instFiniteResidueField
(R : Type u_1)
[CommRing R]
[IsLocalRing R]
{R₀ : Type u_4}
[CommRing R₀]
[Algebra R₀ R]
[Module.Finite R₀ R]
:
Module.Finite R₀ (ResidueField R)
def
IsLocalRing.ResidueField.lift
{R : Type u_4}
{S : Type u_5}
[CommRing R]
[IsLocalRing R]
[Field S]
(f : R →+* S)
[IsLocalHom f]
:
A local ring homomorphism into a field can be descended onto the residue field.
Equations
Instances For
theorem
IsLocalRing.ResidueField.lift_comp_residue
{R : Type u_4}
{S : Type u_5}
[CommRing R]
[IsLocalRing R]
[Field S]
(f : R →+* S)
[IsLocalHom f]
:
@[simp]
theorem
IsLocalRing.ResidueField.lift_residue_apply
{R : Type u_4}
{S : Type u_5}
[CommRing R]
[IsLocalRing R]
[Field S]
(f : R →+* S)
[IsLocalHom f]
(x : R)
:
noncomputable def
IsLocalRing.ResidueField.map
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[IsLocalRing R]
[CommRing S]
[IsLocalRing S]
(f : R →+* S)
[IsLocalHom f]
:
The map on residue fields induced by a local homomorphism between local rings
Equations
Instances For
@[simp]
Applying IsLocalRing.ResidueField.map
to the identity ring homomorphism gives the identity
ring homomorphism.
theorem
IsLocalRing.ResidueField.map_comp
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[IsLocalRing R]
[CommRing S]
[IsLocalRing S]
[CommRing T]
[IsLocalRing T]
(f : T →+* R)
(g : R →+* S)
[IsLocalHom f]
[IsLocalHom g]
:
The composite of two IsLocalRing.ResidueField.map
s is the IsLocalRing.ResidueField.map
of
the composite.
theorem
IsLocalRing.ResidueField.map_comp_residue
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[IsLocalRing R]
[CommRing S]
[IsLocalRing S]
(f : R →+* S)
[IsLocalHom f]
:
theorem
IsLocalRing.ResidueField.map_residue
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[IsLocalRing R]
[CommRing S]
[IsLocalRing S]
(f : R →+* S)
[IsLocalHom f]
(r : R)
:
theorem
IsLocalRing.ResidueField.map_id_apply
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(x : ResidueField R)
:
@[simp]
theorem
IsLocalRing.ResidueField.map_map
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[IsLocalRing R]
[CommRing S]
[IsLocalRing S]
[CommRing T]
[IsLocalRing T]
(f : R →+* S)
(g : S →+* T)
(x : ResidueField R)
[IsLocalHom f]
[IsLocalHom g]
:
noncomputable def
IsLocalRing.ResidueField.mapEquiv
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[IsLocalRing R]
[CommRing S]
[IsLocalRing S]
(f : R ≃+* S)
:
A ring isomorphism defines an isomorphism of residue fields.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
IsLocalRing.ResidueField.mapEquiv_apply
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[IsLocalRing R]
[CommRing S]
[IsLocalRing S]
(f : R ≃+* S)
(a : ResidueField R)
:
@[simp]
theorem
IsLocalRing.ResidueField.mapEquiv.symm
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[IsLocalRing R]
[CommRing S]
[IsLocalRing S]
(f : R ≃+* S)
:
@[simp]
theorem
IsLocalRing.ResidueField.mapEquiv_trans
{R : Type u_1}
{S : Type u_2}
{T : Type u_3}
[CommRing R]
[IsLocalRing R]
[CommRing S]
[IsLocalRing S]
[CommRing T]
[IsLocalRing T]
(e₁ : R ≃+* S)
(e₂ : S ≃+* T)
:
@[simp]
The group homomorphism from RingAut R
to RingAut k
where k
is the residue field of R
.
Equations
- IsLocalRing.ResidueField.mapAut = { toFun := IsLocalRing.ResidueField.mapEquiv, map_one' := ⋯, map_mul' := ⋯ }
Instances For
@[simp]
theorem
IsLocalRing.ResidueField.mapAut_apply
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(f : R ≃+* R)
:
noncomputable instance
IsLocalRing.ResidueField.instMulSemiringAction
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(G : Type u_4)
[Group G]
[MulSemiringAction G R]
:
If G
acts on R
as a MulSemiringAction
, then it also acts on IsLocalRing.ResidueField R
.
@[simp]
theorem
IsLocalRing.ResidueField.residue_smul
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
(G : Type u_4)
[Group G]
[MulSemiringAction G R]
(g : G)
(r : R)
:
noncomputable instance
IsLocalRing.ResidueField.instAlgebra
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[IsLocalRing R]
[CommRing S]
[IsLocalRing S]
[Algebra R S]
[IsLocalHom (algebraMap R S)]
:
Algebra (ResidueField R) (ResidueField S)
Equations
instance
IsLocalRing.ResidueField.instIsScalarTower
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[IsLocalRing R]
[CommRing S]
[IsLocalRing S]
[Algebra R S]
[IsLocalHom (algebraMap R S)]
:
IsScalarTower R (ResidueField R) (ResidueField S)
instance
IsLocalRing.ResidueField.finite_of_module_finite
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[IsLocalRing R]
[CommRing S]
[IsLocalRing S]
[Algebra R S]
[IsLocalHom (algebraMap R S)]
[Module.Finite R S]
:
Module.Finite (ResidueField R) (ResidueField S)
theorem
IsLocalRing.ResidueField.finite_of_finite
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[IsLocalRing R]
[CommRing S]
[IsLocalRing S]
[Algebra R S]
[IsLocalHom (algebraMap R S)]
[Module.Finite R S]
(hfin : Finite (ResidueField R))
:
Finite (ResidueField S)
theorem
IsLocalRing.isLocalHom_residue
{R : Type u_1}
[CommRing R]
[IsLocalRing R]
:
IsLocalHom (residue R)