Flatness and localization #
In this file we show that localizations are flat, and flatness is a local property.
Main result #
IsLocalization.flat
: a localization of a commutative ring is flat over it.Module.flat_iff_of_isLocalization
: LetRₚ
a localization of a commutative ringR
andM
be a module overRₚ
. ThenM
is flat overR
if and only ifM
is flat overRₚ
.Module.flat_of_isLocalized_maximal
: LetM
be a module over a commutative ringR
. If the localization ofM
at each maximal idealP
is flat overRₚ
, thenM
is flat overR
.Module.flat_of_isLocalized_span
: LetM
be a module over a commutative ringR
andS
be a set that spansR
. If the localization ofM
at eachs : S
is flat overLocalization.Away s
, thenM
is flat overR
.
theorem
IsLocalization.flat
{R : Type u_1}
(S : Type u_2)
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
(p : Submonoid R)
[IsLocalization p S]
:
Module.Flat R S
instance
Localization.flat
{R : Type u_1}
[CommSemiring R]
(p : Submonoid R)
:
Module.Flat R (Localization p)
theorem
Module.flat_iff_of_isLocalization
{R : Type u_1}
(S : Type u_2)
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
(p : Submonoid R)
[IsLocalization p S]
(M : Type u_3)
[AddCommMonoid M]
[Module R M]
[Module S M]
[IsScalarTower R S M]
:
theorem
Module.flat_of_isLocalized_maximal
{R : Type u_1}
(S : Type u_2)
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
(M : Type u_3)
[AddCommMonoid M]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(Mₚ : (P : Ideal S) → [inst : P.IsMaximal] → Type u_4)
[(P : Ideal S) → [inst : P.IsMaximal] → AddCommMonoid (Mₚ P)]
[(P : Ideal S) → [inst : P.IsMaximal] → Module R (Mₚ P)]
[(P : Ideal S) → [inst : P.IsMaximal] → Module S (Mₚ P)]
[∀ (P : Ideal S) [inst : P.IsMaximal], IsScalarTower R S (Mₚ P)]
(f : (P : Ideal S) → [inst : P.IsMaximal] → M →ₗ[S] Mₚ P)
[∀ (P : Ideal S) [inst : P.IsMaximal], IsLocalizedModule P.primeCompl (f P)]
(H : ∀ (P : Ideal S) [inst : P.IsMaximal], Flat R (Mₚ P))
:
Flat R M
theorem
Module.flat_of_localized_maximal
{R : Type u_1}
[CommSemiring R]
(M : Type u_3)
[AddCommMonoid M]
[Module R M]
(h : ∀ (P : Ideal R) [inst : P.IsMaximal], Flat R (LocalizedModule P.primeCompl M))
:
Flat R M
theorem
Module.flat_of_isLocalized_span
{R : Type u_1}
(S : Type u_2)
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
(M : Type u_3)
[AddCommMonoid M]
[Module R M]
[Module S M]
[IsScalarTower R S M]
(s : Set S)
(spn : Ideal.span s = ⊤)
(Mₛ : ↑s → Type u_5)
[(r : ↑s) → AddCommMonoid (Mₛ r)]
[(r : ↑s) → Module R (Mₛ r)]
[(r : ↑s) → Module S (Mₛ r)]
[∀ (r : ↑s), IsScalarTower R S (Mₛ r)]
(g : (r : ↑s) → M →ₗ[S] Mₛ r)
[∀ (r : ↑s), IsLocalizedModule (Submonoid.powers ↑r) (g r)]
(H : ∀ (r : ↑s), Flat R (Mₛ r))
:
Flat R M
theorem
Module.flat_of_localized_span
(S : Type u_2)
[CommSemiring S]
(M : Type u_3)
[AddCommMonoid M]
[Module S M]
(s : Set S)
(spn : Ideal.span s = ⊤)
(h : ∀ (r : ↑s), Flat S (LocalizedModule (Submonoid.powers ↑r) M))
:
Flat S M