Documentation

Mathlib.RingTheory.Flat.Localization

Flatness and localization #

In this file we show that localizations are flat, and flatness is a local property.

Main result #

theorem IsLocalization.flat {R : Type u_1} (S : Type u_2) [CommSemiring R] [CommSemiring S] [Algebra R S] (p : Submonoid R) [IsLocalization p S] :
theorem Module.flat_iff_of_isLocalization {R : Type u_1} (S : Type u_2) [CommSemiring R] [CommSemiring S] [Algebra R S] (p : Submonoid R) [IsLocalization p S] (M : Type u_3) [AddCommMonoid M] [Module R M] [Module S M] [IsScalarTower R S M] :
Flat S M Flat R M
theorem Module.flat_of_isLocalized_maximal {R : Type u_1} (S : Type u_2) [CommSemiring R] [CommSemiring S] [Algebra R S] (M : Type u_3) [AddCommMonoid M] [Module R M] [Module S M] [IsScalarTower R S M] (Mₚ : (P : Ideal S) → [inst : P.IsMaximal] → Type u_4) [(P : Ideal S) → [inst : P.IsMaximal] → AddCommMonoid (Mₚ P)] [(P : Ideal S) → [inst : P.IsMaximal] → Module R (Mₚ P)] [(P : Ideal S) → [inst : P.IsMaximal] → Module S (Mₚ P)] [∀ (P : Ideal S) [inst : P.IsMaximal], IsScalarTower R S (Mₚ P)] (f : (P : Ideal S) → [inst : P.IsMaximal] → M →ₗ[S] Mₚ P) [∀ (P : Ideal S) [inst : P.IsMaximal], IsLocalizedModule P.primeCompl (f P)] (H : ∀ (P : Ideal S) [inst : P.IsMaximal], Flat R (Mₚ P)) :
Flat R M
theorem Module.flat_of_localized_maximal {R : Type u_1} [CommSemiring R] (M : Type u_3) [AddCommMonoid M] [Module R M] (h : ∀ (P : Ideal R) [inst : P.IsMaximal], Flat R (LocalizedModule P.primeCompl M)) :
Flat R M
theorem Module.flat_of_isLocalized_span {R : Type u_1} (S : Type u_2) [CommSemiring R] [CommSemiring S] [Algebra R S] (M : Type u_3) [AddCommMonoid M] [Module R M] [Module S M] [IsScalarTower R S M] (s : Set S) (spn : Ideal.span s = ) (Mₛ : sType u_5) [(r : s) → AddCommMonoid (Mₛ r)] [(r : s) → Module R (Mₛ r)] [(r : s) → Module S (Mₛ r)] [∀ (r : s), IsScalarTower R S (Mₛ r)] (g : (r : s) → M →ₗ[S] Mₛ r) [∀ (r : s), IsLocalizedModule (Submonoid.powers r) (g r)] (H : ∀ (r : s), Flat R (Mₛ r)) :
Flat R M
theorem Module.flat_of_localized_span (S : Type u_2) [CommSemiring S] (M : Type u_3) [AddCommMonoid M] [Module S M] (s : Set S) (spn : Ideal.span s = ) (h : ∀ (r : s), Flat S (LocalizedModule (Submonoid.powers r) M)) :
Flat S M