Documentation

Mathlib.Algebra.Module.LocalizedModule.AtPrime

Localizations of modules at the complement of a prime ideal #

@[reducible, inline]
abbrev IsLocalizedModule.AtPrime {R : Type u_1} {M : Type u_2} {M' : Type u_3} [CommSemiring R] (P : Ideal R) [P.IsPrime] [AddCommMonoid M] [AddCommMonoid M'] [Module R M] [Module R M'] (f : M →ₗ[R] M') :

Given a prime ideal P and f : M →ₗ[R] M', IsLocalizedModule.AtPrime P f states that M' is isomorphic to the localization of M at the complement of P.

Equations
Instances For
    @[reducible, inline]
    abbrev LocalizedModule.AtPrime {R : Type u_1} [CommSemiring R] (P : Ideal R) [P.IsPrime] (M : Type u_2) [AddCommMonoid M] [Module R M] :
    Type (max u_1 u_2)

    Given a prime ideal P, LocalizedModule.AtPrime P M is a localization of M at the complement of P.

    Equations
    Instances For