Documentation

Mathlib.RingTheory.Spectrum.Prime.LTSeries

Lemmas about LTSeries in the prime spectrum #

Main results #

theorem PrimeSpectrum.exist_mem_one_of_mem_maximal_ideal {R : Type u_1} [CommRing R] [IsNoetherianRing R] [IsLocalRing R] {p₁ p₀ : PrimeSpectrum R} (h₀ : p₀ < p₁) (h₁ : p₁ < IsLocalRing.closedPoint R) {x : R} (hx : x IsLocalRing.maximalIdeal R) :
theorem PrimeSpectrum.exist_mem_one_of_mem_two {R : Type u_1} [CommRing R] [IsNoetherianRing R] {p₁ p₀ p₂ : PrimeSpectrum R} (h₀ : p₀ < p₁) (h₁ : p₁ < p₂) {x : R} (hx : x p₂.asIdeal) :
∃ (q : PrimeSpectrum R), x q.asIdeal p₀ < q q < p₂

Let $R$ be a Noetherian ring, $\mathfrak{p}_0 < \dots < \mathfrak{p}_n$ be a chain of primes, $x \in \mathfrak{p}_n$. Then we can find another chain of primes $\mathfrak{q}_0 < \dots < \mathfrak{q}_n$ such that $x \in \mathfrak{q}_1$, $\mathfrak{p}_0 = \mathfrak{q}_0$ and $\mathfrak{p}_n = \mathfrak{q}_n$.