Documentation

Mathlib.RingTheory.Spectrum.Prime.TensorProduct

Lemmas regarding the prime spectrum of tensor products #

Main result #

noncomputable def PrimeSpectrum.tensorProductTo (R : Type u_1) (S : Type u_2) (T : Type u_3) [CommRing R] [CommRing S] [Algebra R S] [CommRing T] [Algebra R T] (x : PrimeSpectrum (TensorProduct R S T)) :

The canonical map from Spec(S ⊗[R] T) to the cartesian product Spec S × Spec T.

Equations
Instances For
    theorem PrimeSpectrum.continuous_tensorProductTo (R : Type u_1) (S : Type u_2) (T : Type u_3) [CommRing R] [CommRing S] [Algebra R S] [CommRing T] [Algebra R T] :
    theorem PrimeSpectrum.isEmbedding_tensorProductTo_of_surjectiveOnStalks_aux (R : Type u_1) (S : Type u_2) (T : Type u_3) [CommRing R] [CommRing S] [Algebra R S] [CommRing T] [Algebra R T] (hRT : (algebraMap R T).SurjectiveOnStalks) (p₁ p₂ : PrimeSpectrum (TensorProduct R S T)) (h : tensorProductTo R S T p₁ = tensorProductTo R S T p₂) :
    p₁ p₂
    theorem PrimeSpectrum.isEmbedding_tensorProductTo_of_surjectiveOnStalks (R : Type u_1) (S : Type u_2) (T : Type u_3) [CommRing R] [CommRing S] [Algebra R S] [CommRing T] [Algebra R T] (hRT : (algebraMap R T).SurjectiveOnStalks) :
    @[deprecated PrimeSpectrum.isEmbedding_tensorProductTo_of_surjectiveOnStalks (since := "2024-10-26")]
    theorem PrimeSpectrum.embedding_tensorProductTo_of_surjectiveOnStalks (R : Type u_1) (S : Type u_2) (T : Type u_3) [CommRing R] [CommRing S] [Algebra R S] [CommRing T] [Algebra R T] (hRT : (algebraMap R T).SurjectiveOnStalks) :

    Alias of PrimeSpectrum.isEmbedding_tensorProductTo_of_surjectiveOnStalks.