Documentation

Mathlib.RingTheory.TensorProduct.Pi

Tensor product and products of algebras #

In this file we examine the behaviour of the tensor product with (finite) products. This is a direct application of Mathlib.LinearAlgebra.TensorProduct.Pi to the algebra case.

@[simp]
theorem piRightHom_one (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {ι : Type u_4} (B : ιType u_5) [(i : ι) → CommSemiring (B i)] [(i : ι) → Algebra R (B i)] :
@[simp]
theorem piRightHom_mul {R : Type u_1} {S : Type u_2} {A : Type u_3} [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {ι : Type u_4} {B : ιType u_5} [(i : ι) → CommSemiring (B i)] [(i : ι) → Algebra R (B i)] (x y : TensorProduct R A ((i : ι) → B i)) :
noncomputable def piRightHom (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {ι : Type u_4} (B : ιType u_5) [(i : ι) → CommSemiring (B i)] [(i : ι) → Algebra R (B i)] :
TensorProduct R A ((i : ι) → B i) →ₐ[S] (i : ι) → TensorProduct R A (B i)

The canonical map A ⊗[R] (∀ i, B i) →ₐ[S] ∀ i, A ⊗[R] B i. This is an isomorphism if ι is finite (see Algebra.TensorProduct.piRight).

Equations
Instances For
    noncomputable def Algebra.TensorProduct.piRight (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {ι : Type u_4} (B : ιType u_5) [(i : ι) → CommSemiring (B i)] [(i : ι) → Algebra R (B i)] [Fintype ι] [DecidableEq ι] :
    TensorProduct R A ((i : ι) → B i) ≃ₐ[S] (i : ι) → TensorProduct R A (B i)

    Tensor product of rings commutes with finite products on the right.

    Equations
    Instances For
      @[simp]
      theorem Algebra.TensorProduct.piRight_tmul (R : Type u_1) (S : Type u_2) (A : Type u_3) [CommSemiring R] [CommSemiring S] [Algebra R S] [CommSemiring A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {ι : Type u_4} (B : ιType u_5) [(i : ι) → CommSemiring (B i)] [(i : ι) → Algebra R (B i)] [Fintype ι] [DecidableEq ι] (x : A) (f : (i : ι) → B i) :
      (piRight R S A B) (x ⊗ₜ[R] f) = fun (j : ι) => x ⊗ₜ[R] f j