Tensor product and products of algebras #
In this file we examine the behaviour of the tensor product with (finite) products. This
is a direct application of Mathlib.LinearAlgebra.TensorProduct.Pi
to the algebra case.
@[simp]
theorem
piRightHom_one
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
[CommSemiring A]
[Algebra R A]
[Algebra S A]
[IsScalarTower R S A]
{ι : Type u_4}
(B : ι → Type u_5)
[(i : ι) → CommSemiring (B i)]
[(i : ι) → Algebra R (B i)]
:
(TensorProduct.piRightHom R S A B) 1 = 1
@[simp]
theorem
piRightHom_mul
{R : Type u_1}
{S : Type u_2}
{A : Type u_3}
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
[CommSemiring A]
[Algebra R A]
[Algebra S A]
[IsScalarTower R S A]
{ι : Type u_4}
{B : ι → Type u_5}
[(i : ι) → CommSemiring (B i)]
[(i : ι) → Algebra R (B i)]
(x y : TensorProduct R A ((i : ι) → B i))
:
(TensorProduct.piRightHom R S A B) (x * y) = (TensorProduct.piRightHom R S A B) x * (TensorProduct.piRightHom R S A B) y
noncomputable def
piRightHom
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
[CommSemiring A]
[Algebra R A]
[Algebra S A]
[IsScalarTower R S A]
{ι : Type u_4}
(B : ι → Type u_5)
[(i : ι) → CommSemiring (B i)]
[(i : ι) → Algebra R (B i)]
:
TensorProduct R A ((i : ι) → B i) →ₐ[S] (i : ι) → TensorProduct R A (B i)
The canonical map A ⊗[R] (∀ i, B i) →ₐ[S] ∀ i, A ⊗[R] B i
. This is an isomorphism
if ι
is finite (see Algebra.TensorProduct.piRight
).
Equations
- piRightHom R S A B = AlgHom.ofLinearMap (TensorProduct.piRightHom R S A B) ⋯ ⋯
Instances For
noncomputable def
Algebra.TensorProduct.piRight
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
[CommSemiring A]
[Algebra R A]
[Algebra S A]
[IsScalarTower R S A]
{ι : Type u_4}
(B : ι → Type u_5)
[(i : ι) → CommSemiring (B i)]
[(i : ι) → Algebra R (B i)]
[Fintype ι]
[DecidableEq ι]
:
TensorProduct R A ((i : ι) → B i) ≃ₐ[S] (i : ι) → TensorProduct R A (B i)
Tensor product of rings commutes with finite products on the right.
Equations
- Algebra.TensorProduct.piRight R S A B = AlgEquiv.ofLinearEquiv (TensorProduct.piRight R S A B) ⋯ ⋯
Instances For
@[simp]
theorem
Algebra.TensorProduct.piRight_tmul
(R : Type u_1)
(S : Type u_2)
(A : Type u_3)
[CommSemiring R]
[CommSemiring S]
[Algebra R S]
[CommSemiring A]
[Algebra R A]
[Algebra S A]
[IsScalarTower R S A]
{ι : Type u_4}
(B : ι → Type u_5)
[(i : ι) → CommSemiring (B i)]
[(i : ι) → Algebra R (B i)]
[Fintype ι]
[DecidableEq ι]
(x : A)
(f : (i : ι) → B i)
: