Documentation

Mathlib.RingTheory.TwoSidedIdeal.Kernel

Kernel of a ring homomorphism as a two-sided ideal #

In this file we define the kernel of a ring homomorphism f : R → S as a two-sided ideal of R.

We put this in a separate file so that we could import it in SimpleRing/Basic.lean without importing any finiteness result.

The kernel of a ring homomorphism, as a two-sided ideal.

Equations
  • TwoSidedIdeal.ker f = { ringCon := { r := fun (x y : R) => f x = f y, iseqv := , mul' := , add' := } }
Instances For
    @[simp]
    theorem TwoSidedIdeal.ker_ringCon {R : Type u_1} {S : Type u_2} [NonUnitalNonAssocRing R] [NonUnitalNonAssocSemiring S] {F : Type u_3} [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) {x y : R} :
    (ker f).ringCon x y f x = f y
    theorem TwoSidedIdeal.mem_ker {R : Type u_1} {S : Type u_2} [NonUnitalNonAssocRing R] [NonUnitalNonAssocSemiring S] {F : Type u_3} [FunLike F R S] [NonUnitalRingHomClass F R S] (f : F) {x : R} :
    x ker f f x = 0
    @[simp]
    theorem TwoSidedIdeal.ker_ringCon_mk' {R : Type u_4} [NonAssocRing R] (I : TwoSidedIdeal R) :
    ker I.ringCon.mk' = I

    The kernel of the ring homomorphism R → R⧸I is I.