Multiplicative maps on unique factorization domains #
Main results #
UniqueFactorizationMonoid.induction_on_coprime
: ifP
holds for0
, units and powers of primes, andP x ∧ P y
for coprimex, y
impliesP (x * y)
, thenP
holds on alla : α
.UniqueFactorizationMonoid.multiplicative_of_coprime
: iff
mapsp ^ i
to(f p) ^ i
for primesp
, andf
is multiplicative on coprime elements, thenf
is multiplicative everywhere.
theorem
UniqueFactorizationMonoid.prime_pow_coprime_prod_of_coprime_insert
{α : Type u_1}
[CancelCommMonoidWithZero α]
[UniqueFactorizationMonoid α]
[DecidableEq α]
{s : Finset α}
(i : α → ℕ)
(p : α)
(hps : p ∉ s)
(is_prime : ∀ q ∈ insert p s, Prime q)
(is_coprime : ∀ q ∈ insert p s, ∀ q' ∈ insert p s, q ∣ q' → q = q')
:
IsRelPrime (p ^ i p) (∏ p' ∈ s, p' ^ i p')
theorem
UniqueFactorizationMonoid.induction_on_prime_power
{α : Type u_1}
[CancelCommMonoidWithZero α]
[UniqueFactorizationMonoid α]
{P : α → Prop}
(s : Finset α)
(i : α → ℕ)
(is_prime : ∀ p ∈ s, Prime p)
(is_coprime : ∀ p ∈ s, ∀ q ∈ s, p ∣ q → p = q)
(h1 : ∀ {x : α}, IsUnit x → P x)
(hpr : ∀ {p : α} (i : ℕ), Prime p → P (p ^ i))
(hcp : ∀ {x y : α}, IsRelPrime x y → P x → P y → P (x * y))
:
P (∏ p ∈ s, p ^ i p)
If P
holds for units and powers of primes,
and P x ∧ P y
for coprime x, y
implies P (x * y)
,
then P
holds on a product of powers of distinct primes.
theorem
UniqueFactorizationMonoid.induction_on_coprime
{α : Type u_1}
[CancelCommMonoidWithZero α]
[UniqueFactorizationMonoid α]
{P : α → Prop}
(a : α)
(h0 : P 0)
(h1 : ∀ {x : α}, IsUnit x → P x)
(hpr : ∀ {p : α} (i : ℕ), Prime p → P (p ^ i))
(hcp : ∀ {x y : α}, IsRelPrime x y → P x → P y → P (x * y))
:
P a
If P
holds for 0
, units and powers of primes,
and P x ∧ P y
for coprime x, y
implies P (x * y)
,
then P
holds on all a : α
.
theorem
UniqueFactorizationMonoid.multiplicative_prime_power
{α : Type u_1}
[CancelCommMonoidWithZero α]
[UniqueFactorizationMonoid α]
{β : Type u_3}
[CancelCommMonoidWithZero β]
{f : α → β}
(s : Finset α)
(i j : α → ℕ)
(is_prime : ∀ p ∈ s, Prime p)
(is_coprime : ∀ p ∈ s, ∀ q ∈ s, p ∣ q → p = q)
(h1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y)
(hpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i)
(hcp : ∀ {x y : α}, IsRelPrime x y → f (x * y) = f x * f y)
:
If f
maps p ^ i
to (f p) ^ i
for primes p
, and f
is multiplicative on coprime elements, then f
is multiplicative on all products of primes.
theorem
UniqueFactorizationMonoid.multiplicative_of_coprime
{α : Type u_1}
[CancelCommMonoidWithZero α]
[UniqueFactorizationMonoid α]
{β : Type u_3}
[CancelCommMonoidWithZero β]
(f : α → β)
(a b : α)
(h0 : f 0 = 0)
(h1 : ∀ {x y : α}, IsUnit y → f (x * y) = f x * f y)
(hpr : ∀ {p : α} (i : ℕ), Prime p → f (p ^ i) = f p ^ i)
(hcp : ∀ {x y : α}, IsRelPrime x y → f (x * y) = f x * f y)
:
If f
maps p ^ i
to (f p) ^ i
for primes p
, and f
is multiplicative on coprime elements, then f
is multiplicative everywhere.