Documentation

Mathlib.RingTheory.WittVector.TeichmullerSeries

Teichmuller Series #

Let R be a characteristic p perfect ring. In this file, we show that every element x of the Witt vectors 𝕎 R can be written as the (p-adic) summation of Teichmuller series, namely ∑ i, (teichmuller p (((frobeniusEquiv R p).symm ^ i) (x.coeff i)) * p ^ i)

Main theorems #

TODO #

Show that the Teichmuller series is unique.

theorem WittVector.sum_coeff_eq_coeff_sum {p : } [hp : Fact (Nat.Prime p)] {R : Type u_1} [CommRing R] {α : Type u_2} {S : Finset α} (x : αWittVector p R) (h : ∀ (n : ), Subsingleton {r : α | r S (x r).coeff n 0}) (n : ) :
(∑ sS, x s).coeff n = sS, (x s).coeff n
@[simp]
theorem WittVector.teichmuller_mul_pow_coeff {p : } [hp : Fact (Nat.Prime p)] {R : Type u_1} [CommRing R] [CharP R p] (n : ) (x : R) :
((teichmuller p) x * p ^ n).coeff n = x ^ p ^ n
theorem WittVector.teichmuller_mul_pow_coeff_of_ne {p : } [hp : Fact (Nat.Prime p)] {R : Type u_1} [CommRing R] [CharP R p] (x : R) {m n : } (h : m n) :
((teichmuller p) x * p ^ n).coeff m = 0
theorem WittVector.dvd_sub_sum_teichmuller_iterateFrobeniusEquiv_coeff {p : } [hp : Fact (Nat.Prime p)] {R : Type u_1} [CommRing R] [CharP R p] [PerfectRing R p] (x : WittVector p R) (n : ) :
p ^ (n + 1) x - iFinset.Iic n, (teichmuller p) (((_root_.frobeniusEquiv R p).symm ^ i) (x.coeff i)) * p ^ i

p ^ (n + 1) divides x minus the summation of the first n + 1 terms of the Teichmuller series.

theorem WittVector.eq_of_apply_teichmuller_eq {p : } [hp : Fact (Nat.Prime p)] {R : Type u_1} [CommRing R] [CharP R p] [PerfectRing R p] {S : Type u_2} [CommRing S] (f g : WittVector p R →+* S) :
IsNilpotent p∀ (h : ∀ (x : R), f ((teichmuller p) x) = g ((teichmuller p) x)), f = g

Given a ring S such that p is nilpotent in S and two ring maps f g : 𝕎 R →+* S, if they coincide on the teichmuller representatives, then they are equal.