Teichmuller Series #
Let R be a characteristic p perfect ring. In this file, we show that
every element x of the Witt vectors 𝕎 R can be written as the
(p-adic) summation of Teichmuller series, namely
∑ i, (teichmuller p (((frobeniusEquiv R p).symm ^ i) (x.coeff i)) * p ^ i)
Main theorems #
WittVector.dvd_sub_sum_teichmuller_iterateFrobeniusEquiv_coeff:p ^ (n + 1)dividesxminus the summation of the firstn + 1terms of the Teichmuller series.WittVector.eq_of_apply_teichmuller_eq: Given a ringSsuch thatpis nilpotent inSand two ring mapsf g : 𝕎 R →+* S, if they coincide on the teichmuller representatives, then they are equal.
TODO #
Show that the Teichmuller series is unique.
theorem
WittVector.dvd_sub_sum_teichmuller_iterateFrobeniusEquiv_coeff
{p : ℕ}
[hp : Fact (Nat.Prime p)]
{R : Type u_1}
[CommRing R]
[CharP R p]
[PerfectRing R p]
(x : WittVector p R)
(n : ℕ)
:
↑p ^ (n + 1) ∣ x - ∑ i ∈ Finset.Iic n, (teichmuller p) (((_root_.frobeniusEquiv R p).symm ^ i) (x.coeff i)) * ↑p ^ i
p ^ (n + 1) divides
x minus the summation of the first n + 1 terms of the Teichmuller series.
theorem
WittVector.eq_of_apply_teichmuller_eq
{p : ℕ}
[hp : Fact (Nat.Prime p)]
{R : Type u_1}
[CommRing R]
[CharP R p]
[PerfectRing R p]
{S : Type u_2}
[CommRing S]
(f g : WittVector p R →+* S)
:
IsNilpotent ↑p → ∀ (h : ∀ (x : R), f ((teichmuller p) x) = g ((teichmuller p) x)), f = g
Given a ring S such that p is nilpotent in S
and two ring maps f g : 𝕎 R →+* S, if they coincide on the teichmuller representatives,
then they are equal.