Documentation
Mathlib
.
SetTheory
.
Cardinal
.
Finsupp
Search
return to top
source
Imports
Init
Mathlib.Data.Finsupp.Basic
Mathlib.Data.Finsupp.Multiset
Mathlib.SetTheory.Cardinal.Arithmetic
Imported by
Cardinal
.
mk_finsupp_lift_of_fintype
Cardinal
.
mk_finsupp_of_fintype
Cardinal
.
mk_finsupp_lift_of_infinite
Cardinal
.
mk_finsupp_of_infinite
Cardinal
.
mk_finsupp_lift_of_infinite'
Cardinal
.
mk_finsupp_of_infinite'
Cardinal
.
mk_finsupp_nat
Cardinal
.
mk_multiset_of_isEmpty
Cardinal
.
mk_multiset_of_nonempty
Cardinal
.
mk_multiset_of_infinite
Cardinal
.
mk_multiset_of_countable
Results on the cardinality of finitely supported functions and multisets.
#
source
@[simp]
theorem
Cardinal
.
mk_finsupp_lift_of_fintype
(α :
Type
u)
(β :
Type
v)
[
Fintype
α
]
[
Zero
β
]
:
mk
(
α
→₀
β
)
=
lift.{u, v}
(
mk
β
)
^
Fintype.card
α
source
theorem
Cardinal
.
mk_finsupp_of_fintype
(α β :
Type
u)
[
Fintype
α
]
[
Zero
β
]
:
mk
(
α
→₀
β
)
=
mk
β
^
Fintype.card
α
source
@[simp]
theorem
Cardinal
.
mk_finsupp_lift_of_infinite
(α :
Type
u)
(β :
Type
v)
[
Infinite
α
]
[
Zero
β
]
[
Nontrivial
β
]
:
mk
(
α
→₀
β
)
=
lift.{v, u}
(
mk
α
)
⊔
lift.{u, v}
(
mk
β
)
source
theorem
Cardinal
.
mk_finsupp_of_infinite
(α β :
Type
u)
[
Infinite
α
]
[
Zero
β
]
[
Nontrivial
β
]
:
mk
(
α
→₀
β
)
=
mk
α
⊔
mk
β
source
@[simp]
theorem
Cardinal
.
mk_finsupp_lift_of_infinite'
(α :
Type
u)
(β :
Type
v)
[
Nonempty
α
]
[
Zero
β
]
[
Infinite
β
]
:
mk
(
α
→₀
β
)
=
lift.{v, u}
(
mk
α
)
⊔
lift.{u, v}
(
mk
β
)
source
theorem
Cardinal
.
mk_finsupp_of_infinite'
(α β :
Type
u)
[
Nonempty
α
]
[
Zero
β
]
[
Infinite
β
]
:
mk
(
α
→₀
β
)
=
mk
α
⊔
mk
β
source
theorem
Cardinal
.
mk_finsupp_nat
(α :
Type
u)
[
Nonempty
α
]
:
mk
(
α
→₀
ℕ
)
=
mk
α
⊔
aleph0
source
theorem
Cardinal
.
mk_multiset_of_isEmpty
(α :
Type
u)
[
IsEmpty
α
]
:
mk
(
Multiset
α
)
=
1
source
@[simp]
theorem
Cardinal
.
mk_multiset_of_nonempty
(α :
Type
u)
[
Nonempty
α
]
:
mk
(
Multiset
α
)
=
mk
α
⊔
aleph0
source
theorem
Cardinal
.
mk_multiset_of_infinite
(α :
Type
u)
[
Infinite
α
]
:
mk
(
Multiset
α
)
=
mk
α
source
theorem
Cardinal
.
mk_multiset_of_countable
(α :
Type
u)
[
Countable
α
]
[
Nonempty
α
]
:
mk
(
Multiset
α
)
=
aleph0