Documentation

Mathlib.SetTheory.Cardinal.Free

Cardinalities of free constructions #

This file shows that all the free constructions over α have cardinality max #α ℵ₀, and are thus infinite.

Combined with the ring Fin n for the finite cases, this lets us show that there is a CommRing of any cardinality.

@[simp]
theorem Cardinal.mk_freeMonoid (α : Type u) [Nonempty α] :
@[simp]
@[simp]
theorem Cardinal.mk_freeGroup (α : Type u) [Nonempty α] :
@[simp]
@[simp]
theorem Cardinal.mk_freeRing (α : Type u) :
@[simp]
instance nonempty_commRing (α : Type u) [Nonempty α] :

A commutative ring can be constructed on any non-empty type.

See also Infinite.nonempty_field.

@[simp]
@[simp]
theorem nonempty_ring_iff (α : Type u) :
@[simp]