Documentation

Mathlib.SetTheory.ZFC.Ordinal

Von Neumann ordinals #

This file works towards the development of von Neumann ordinals, i.e. transitive sets, well-ordered under .

Definitions #

TODO #

Transitive sets #

A transitive set is one where every element is a subset.

This is equivalent to being an infinite-open interval in the transitive closure of membership.

Equations
  • x.IsTransitive = yx, y x
Instances For
    @[simp]
    theorem ZFSet.isTransitive_empty :
    .IsTransitive
    @[deprecated ZFSet.isTransitive_empty (since := "2024-09-21")]
    theorem ZFSet.empty_isTransitive :
    .IsTransitive

    Alias of ZFSet.isTransitive_empty.

    theorem ZFSet.IsTransitive.subset_of_mem {x y : ZFSet.{u}} (h : x.IsTransitive) :
    y xy x
    theorem ZFSet.isTransitive_iff_mem_trans {z : ZFSet.{u}} :
    z.IsTransitive ∀ {x y : ZFSet.{u}}, x yy zx z
    theorem ZFSet.IsTransitive.mem_trans {z : ZFSet.{u}} :
    z.IsTransitive∀ {x y : ZFSet.{u}}, x yy zx z

    Alias of the forward direction of ZFSet.isTransitive_iff_mem_trans.

    theorem ZFSet.IsTransitive.inter {x y : ZFSet.{u}} (hx : x.IsTransitive) (hy : y.IsTransitive) :
    (x y).IsTransitive
    theorem ZFSet.IsTransitive.sUnion {x : ZFSet.{u}} (h : x.IsTransitive) :
    (⋃₀ x).IsTransitive

    The union of a transitive set is transitive.

    theorem ZFSet.IsTransitive.sUnion' {x : ZFSet.{u}} (H : yx, y.IsTransitive) :
    (⋃₀ x).IsTransitive

    The union of transitive sets is transitive.

    theorem ZFSet.IsTransitive.union {x y : ZFSet.{u}} (hx : x.IsTransitive) (hy : y.IsTransitive) :
    (x y).IsTransitive
    theorem ZFSet.IsTransitive.powerset {x : ZFSet.{u}} (h : x.IsTransitive) :
    x.powerset.IsTransitive
    theorem ZFSet.IsTransitive.sUnion_subset {x : ZFSet.{u}} :
    x.IsTransitive⋃₀ x x

    Alias of the forward direction of ZFSet.isTransitive_iff_sUnion_subset.

    theorem ZFSet.isTransitive_iff_subset_powerset {x : ZFSet.{u}} :
    x.IsTransitive x x.powerset
    theorem ZFSet.IsTransitive.subset_powerset {x : ZFSet.{u}} :
    x.IsTransitivex x.powerset

    Alias of the forward direction of ZFSet.isTransitive_iff_subset_powerset.

    Ordinals #

    A set x is a von Neumann ordinal when it's a transitive set, that's transitive under . We prove that this further implies that x is well-ordered under in isOrdinal_iff_isWellOrder.

    The transitivity condition a ∈ b → b ∈ c → a ∈ c can be written without assuming a ∈ x and b ∈ x. The lemma isOrdinal_iff_isTrans shows this condition is equivalent to the usual one.

    • isTransitive : x.IsTransitive

      An ordinal is a transitive set.

    • mem_trans' {y z w : ZFSet.{u_1}} : y zz ww xy w

      The membership operation within an ordinal is transitive.

    Instances For
      theorem ZFSet.IsOrdinal.subset_of_mem {x y : ZFSet.{u}} (h : x.IsOrdinal) :
      y xy x
      theorem ZFSet.IsOrdinal.mem_trans {x y z : ZFSet.{u}} (h : z.IsOrdinal) :
      x yy zx z
      theorem ZFSet.IsOrdinal.isTrans {x : ZFSet.{u}} (h : x.IsOrdinal) :
      IsTrans { x_1 : ZFSet.{u} // x_1 x } (Subrel (fun (x1 x2 : ZFSet.{u}) => x1 x2) fun (x_1 : ZFSet.{u}) => x_1 x)
      theorem ZFSet.isOrdinal_iff_isTrans {x : ZFSet.{u}} :
      x.IsOrdinal x.IsTransitive IsTrans { x_1 : ZFSet.{u} // x_1 x } (Subrel (fun (x1 x2 : ZFSet.{u}) => x1 x2) fun (x_1 : ZFSet.{u}) => x_1 x)

      The simplified form of transitivity used within IsOrdinal yields an equivalent definition to the standard one.

      theorem ZFSet.IsOrdinal.mem {x y : ZFSet.{u}} (hx : x.IsOrdinal) (hy : y x) :
      y.IsOrdinal
      theorem ZFSet.isOrdinal_iff_forall_mem_isTransitive {x : ZFSet.{u}} :
      x.IsOrdinal x.IsTransitive yx, y.IsTransitive

      An ordinal is a transitive set of transitive sets.

      theorem ZFSet.isOrdinal_iff_forall_mem_isOrdinal {x : ZFSet.{u}} :
      x.IsOrdinal x.IsTransitive yx, y.IsOrdinal

      An ordinal is a transitive set of ordinals.

      theorem ZFSet.IsOrdinal.subset_iff_eq_or_mem {x y : ZFSet.{u}} (hx : x.IsOrdinal) (hy : y.IsOrdinal) :
      x y x = y x y
      theorem ZFSet.IsOrdinal.eq_or_mem_of_subset {x y : ZFSet.{u}} (hx : x.IsOrdinal) (hy : y.IsOrdinal) :
      x yx = y x y

      Alias of the forward direction of ZFSet.IsOrdinal.subset_iff_eq_or_mem.

      theorem ZFSet.IsOrdinal.mem_of_subset_of_mem {x y z : ZFSet.{u}} (h : x.IsOrdinal) (hz : z.IsOrdinal) (hx : x y) (hy : y z) :
      x z
      theorem ZFSet.IsOrdinal.not_mem_iff_subset {x y : ZFSet.{u}} (hx : x.IsOrdinal) (hy : y.IsOrdinal) :
      xy y x
      theorem ZFSet.IsOrdinal.not_subset_iff_mem {x y : ZFSet.{u}} (hx : x.IsOrdinal) (hy : y.IsOrdinal) :
      ¬x y y x
      theorem ZFSet.IsOrdinal.mem_or_subset {x y : ZFSet.{u}} (hx : x.IsOrdinal) (hy : y.IsOrdinal) :
      x y y x
      theorem ZFSet.IsOrdinal.subset_total {x y : ZFSet.{u}} (hx : x.IsOrdinal) (hy : y.IsOrdinal) :
      x y y x
      theorem ZFSet.IsOrdinal.mem_trichotomous {x y : ZFSet.{u}} (hx : x.IsOrdinal) (hy : y.IsOrdinal) :
      x y x = y y x
      theorem ZFSet.IsOrdinal.isTrichotomous {x : ZFSet.{u}} (h : x.IsOrdinal) :
      IsTrichotomous { x_1 : ZFSet.{u} // x_1 x } (Subrel (fun (x1 x2 : ZFSet.{u}) => x1 x2) fun (x_1 : ZFSet.{u}) => x_1 x)
      theorem ZFSet.isOrdinal_iff_isTrichotomous {x : ZFSet.{u}} :
      x.IsOrdinal x.IsTransitive IsTrichotomous { x_1 : ZFSet.{u} // x_1 x } (Subrel (fun (x1 x2 : ZFSet.{u}) => x1 x2) fun (x_1 : ZFSet.{u}) => x_1 x)

      An ordinal is a transitive set, trichotomous under membership.

      theorem ZFSet.IsOrdinal.isWellOrder {x : ZFSet.{u}} (h : x.IsOrdinal) :
      IsWellOrder { x_1 : ZFSet.{u} // x_1 x } (Subrel (fun (x1 x2 : ZFSet.{u}) => x1 x2) fun (x_1 : ZFSet.{u}) => x_1 x)
      theorem ZFSet.isOrdinal_iff_isWellOrder {x : ZFSet.{u}} :
      x.IsOrdinal x.IsTransitive IsWellOrder { x_1 : ZFSet.{u} // x_1 x } (Subrel (fun (x1 x2 : ZFSet.{u}) => x1 x2) fun (x_1 : ZFSet.{u}) => x_1 x)

      An ordinal is a transitive set, well-ordered under membership.

      @[simp]
      theorem ZFSet.isOrdinal_empty :
      .IsOrdinal

      The Burali-Forti paradox: ordinals form a proper class.