bicategory
tactic #
This file provides bicategory
tactic, which solves equations in a bicategory, where
the two sides only differ by replacing strings of bicategory structural morphisms (that is,
associators, unitors, and identities) with different strings of structural morphisms with the same
source and target. In other words, bicategory
solves equalities where both sides have the same
string diagrams.
The core function for the bicategory
tactic is provided in
Mathlib.Tactic.CategoryTheory.Coherence.Basic
. See this file for more details about the
implementation.
Normalize the both sides of an equality.
Equations
- Mathlib.Tactic.Bicategory.bicategoryNf mvarId = Mathlib.Tactic.BicategoryLike.normalForm Mathlib.Tactic.Bicategory.Context `bicategory mvarId
Instances For
Normalize the both sides of an equality.
Equations
- Mathlib.Tactic.Bicategory.tacticBicategory_nf = Lean.ParserDescr.node `Mathlib.Tactic.Bicategory.tacticBicategory_nf 1024 (Lean.ParserDescr.nonReservedSymbol "bicategory_nf" false)
Instances For
Use the coherence theorem for bicategories to solve equations in a bicategory, where the two sides only differ by replacing strings of bicategory structural morphisms (that is, associators, unitors, and identities) with different strings of structural morphisms with the same source and target.
That is, bicategory
can handle goals of the form
a ≫ f ≫ b ≫ g ≫ c = a' ≫ f ≫ b' ≫ g ≫ c'
where a = a'
, b = b'
, and c = c'
can be proved using bicategory_coherence
.
Equations
- Mathlib.Tactic.Bicategory.bicategory mvarId = Mathlib.Tactic.BicategoryLike.main Mathlib.Tactic.Bicategory.Context `bicategory mvarId
Instances For
Use the coherence theorem for bicategories to solve equations in a bicategory, where the two sides only differ by replacing strings of bicategory structural morphisms (that is, associators, unitors, and identities) with different strings of structural morphisms with the same source and target.
That is, bicategory
can handle goals of the form
a ≫ f ≫ b ≫ g ≫ c = a' ≫ f ≫ b' ≫ g ≫ c'
where a = a'
, b = b'
, and c = c'
can be proved using bicategory_coherence
.
Equations
- Mathlib.Tactic.Bicategory.tacticBicategory = Lean.ParserDescr.node `Mathlib.Tactic.Bicategory.tacticBicategory 1024 (Lean.ParserDescr.nonReservedSymbol "bicategory" false)