norm_num
extension for integer div/mod and divides #
This file adds support for the %
, /
, and ∣
(divisibility) operators on ℤ
to the norm_num
tactic.
theorem
Mathlib.Meta.NormNum.isInt_ediv_zero
{a b r : ℤ}
:
Mathlib.Meta.NormNum.IsInt a r → Mathlib.Meta.NormNum.IsNat b 0 → Mathlib.Meta.NormNum.IsNat (a / b) 0
theorem
Mathlib.Meta.NormNum.isInt_ediv
{a b q m a' : ℤ}
{b' r : ℕ}
(ha : Mathlib.Meta.NormNum.IsInt a a')
(hb : Mathlib.Meta.NormNum.IsNat b b')
(hm : q * ↑b' = m)
(h : ↑r + m = a')
(h₂ : r.blt b' = true)
:
Mathlib.Meta.NormNum.IsInt (a / b) q
theorem
Mathlib.Meta.NormNum.isInt_ediv_neg
{a b q q' : ℤ}
(h : Mathlib.Meta.NormNum.IsInt (a / -b) q)
(hq : -q = q')
:
Mathlib.Meta.NormNum.IsInt (a / b) q'
theorem
Mathlib.Meta.NormNum.isNat_neg_of_isNegNat
{a : ℤ}
{b : ℕ}
(h : Mathlib.Meta.NormNum.IsInt a (Int.negOfNat b))
:
def
Mathlib.Meta.NormNum.evalIntDiv.core
(a na : Q(ℤ))
(za : ℤ)
(pa : Q(Mathlib.Meta.NormNum.IsInt «$a» «$na»))
(b : Q(ℤ))
(nb : Q(ℕ))
(pb : Q(Mathlib.Meta.NormNum.IsNat «$b» «$nb»))
:
ℤ × (q : Q(ℤ)) × Q(Mathlib.Meta.NormNum.IsInt («$a» / «$b») «$q»)
Given a result for evaluating a b
in ℤ
where b > 0
, evaluate a / b
.
Instances For
theorem
Mathlib.Meta.NormNum.isInt_emod_zero
{a b r : ℤ}
:
Mathlib.Meta.NormNum.IsInt a r → Mathlib.Meta.NormNum.IsNat b 0 → Mathlib.Meta.NormNum.IsInt (a % b) r
theorem
Mathlib.Meta.NormNum.isInt_emod
{a b q m a' : ℤ}
{b' r : ℕ}
(ha : Mathlib.Meta.NormNum.IsInt a a')
(hb : Mathlib.Meta.NormNum.IsNat b b')
(hm : q * ↑b' = m)
(h : ↑r + m = a')
(h₂ : r.blt b' = true)
:
Mathlib.Meta.NormNum.IsNat (a % b) r
theorem
Mathlib.Meta.NormNum.isInt_emod_neg
{a b : ℤ}
{r : ℕ}
(h : Mathlib.Meta.NormNum.IsNat (a % -b) r)
:
Mathlib.Meta.NormNum.IsNat (a % b) r
def
Mathlib.Meta.NormNum.evalIntMod.go
(a na : Q(ℤ))
(za : ℤ)
(pa : Q(Mathlib.Meta.NormNum.IsInt «$a» «$na»))
(b : Q(ℤ))
:
Mathlib.Meta.NormNum.Result b → Option (Mathlib.Meta.NormNum.Result q(«$a» % «$b»))
Given a result for evaluating a b
in ℤ
, evaluate a % b
.
Equations
- One or more equations did not get rendered due to their size.
- Mathlib.Meta.NormNum.evalIntMod.go a na za pa b x✝ = none
Instances For
def
Mathlib.Meta.NormNum.evalIntMod.core
(a na : Q(ℤ))
(za : ℤ)
(pa : Q(Mathlib.Meta.NormNum.IsInt «$a» «$na»))
(b : Q(ℤ))
(nb : Q(ℕ))
(pb : Q(Mathlib.Meta.NormNum.IsNat «$b» «$nb»))
:
(r : Q(ℕ)) × Q(Mathlib.Meta.NormNum.IsNat («$a» % «$b») «$r»)
Given a result for evaluating a b
in ℤ
where b > 0
, evaluate a % b
.
Instances For
theorem
Mathlib.Meta.NormNum.isInt_dvd_true
{a b a' b' c : ℤ}
:
Mathlib.Meta.NormNum.IsInt a a' → Mathlib.Meta.NormNum.IsInt b b' → a'.mul c = b' → a ∣ b
theorem
Mathlib.Meta.NormNum.isInt_dvd_false
{a b a' b' : ℤ}
:
Mathlib.Meta.NormNum.IsInt a a' → Mathlib.Meta.NormNum.IsInt b b' → (b'.emod a' != 0) = true → ¬a ∣ b